【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y=x2﹣x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x+.(2)3,(3)點(diǎn)Q的坐標(biāo)為(3,),Q′(3,)或(3,2)或(3,﹣).
【解析】
試題分析:(1)拋物線的解析式可以變天為y=(x+1)(x-3),從而可得到點(diǎn)A和點(diǎn)B的坐標(biāo),然后再求得點(diǎn)E的坐標(biāo),設(shè)直線AE的解析式為y=kx+b,將點(diǎn)A和點(diǎn)E的坐標(biāo)代入,求得k和b的值,從而得到AE的解析式;
(2)設(shè)直線CE的解析式為y=mx-,將點(diǎn)E的坐標(biāo)代入求得m的值,從而得到直線CE的解析式,過點(diǎn)P作PF∥y軸,交CE于點(diǎn)F,設(shè)點(diǎn)P的坐標(biāo)為(x,x2﹣x﹣),則點(diǎn)F(x,x-),則FP=﹣x2+.由三角形的面積公式得:ΔEPC的面積=-x2+x,利用二次函數(shù)的媒體人富士康得x的值,從而求得點(diǎn)P的坐標(biāo),作點(diǎn)K關(guān)于CD和CP的對(duì)稱點(diǎn)G、H,連接G、H交CD和CP于N、M,然后利用軸對(duì)稱的性質(zhì)可得到點(diǎn)G和H的坐標(biāo),當(dāng)點(diǎn)O、N、M、H在一條直線上時(shí),KM+MN+NK有最小值,最小值=GH。
(3)由平移后的拋物線經(jīng)過點(diǎn)D,可得到點(diǎn)F的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可求得點(diǎn)G的坐標(biāo),然后分為QG=FG、QG=QF、FQ=FQ三種情況求解即可.
試題解析:(1)∵y=x2﹣x﹣,
∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).
當(dāng)x=4時(shí),y=.
∴E(4,).
設(shè)直線AE的解析式為y=kx+b,將點(diǎn)A和點(diǎn)E的坐標(biāo)代入得:
,
解得:k=,b=.
∴直線AE的解析式為y=x+.
(2)設(shè)直線CE的解析式為y=mx﹣,將點(diǎn)E的坐標(biāo)代入得:4m﹣=,解得:m=.
∴直線CE的解析式為y=x﹣.
過點(diǎn)P作PF∥y軸,交CE與點(diǎn)F.
設(shè)點(diǎn)P的坐標(biāo)為(x,x2﹣x﹣),則點(diǎn)F(x,x﹣),
則FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面積=×(x2+x)×4=﹣x2+x.
∴當(dāng)x=2時(shí),△EPC的面積最大.
∴P(2,﹣).
如圖2所示:作點(diǎn)K關(guān)于CD和CP的對(duì)稱點(diǎn)G、H,連接G、H交CD和CP與N、M.
∵K是CB的中點(diǎn),
∴k(,﹣).
∵點(diǎn)H與點(diǎn)K關(guān)于CP對(duì)稱,
∴點(diǎn)H的坐標(biāo)為(,﹣).
∵點(diǎn)G與點(diǎn)K關(guān)于CD對(duì)稱,
∴點(diǎn)G(0,0).
∴KM+MN+NK=MH+MN+GN.
當(dāng)點(diǎn)O、N、M、H在條直線上時(shí),KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值為3.
(3)如圖3所示:
∵y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F,
∴點(diǎn)F(3,﹣).
∵點(diǎn)G為CE的中點(diǎn),
∴G(2,).
∴FG=.
∴當(dāng)FG=FQ時(shí),點(diǎn)Q(3,),Q′(3,).
當(dāng)GF=GQ時(shí),點(diǎn)F與點(diǎn)Q″關(guān)于y=對(duì)稱,
∴點(diǎn)Q″(3,2).
當(dāng)QG=QF時(shí),設(shè)點(diǎn)Q1的坐標(biāo)為(3,a).
由兩點(diǎn)間的距離公式可知:a+=,解得:a=﹣.
∴點(diǎn)Q1的坐標(biāo)為(3,﹣).
綜上所述,點(diǎn)Q的坐標(biāo)為(3,),Q′(3,)或(3,2)或(3,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上,把表示-4的點(diǎn)移動(dòng)1個(gè)單位長(zhǎng)度后,所得到的對(duì)應(yīng)點(diǎn)表示的數(shù)為( )
A. -2B. -6C. -3或-5D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識(shí)歸納整理如下:
一次函數(shù)與方程的關(guān)系:
①一次函數(shù)的解析式就是一個(gè)二元一次方程;
②點(diǎn)B的橫坐標(biāo)是方程①的解;
③點(diǎn)C的坐標(biāo)(x,y)中的x,y的值是方程組②的解
一次函數(shù)與不等式的關(guān)系:
①函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式③的解集;
②函數(shù)y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式④的解集.
(1)請(qǐng)根據(jù)以上方框中的內(nèi)容在下面數(shù)學(xué)序號(hào)后寫出相應(yīng)的式子:
①;②;③;④;
(2)如果點(diǎn)C的坐標(biāo)為(2,5),那么不等式kx+b≥k1x+b1的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某日的錢塘江觀測(cè)信息如下:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地質(zhì)檢的距離(千米)與時(shí)間(分鐘)的函數(shù)關(guān)系用圖3表示.其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn),點(diǎn)坐標(biāo)為,曲線可用二次函數(shù):s=,(是常數(shù))刻畫.
(1)求值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度,是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖, 及AC邊的中點(diǎn)O,
求作:平行四邊形ABCD
小敏的作法如下:
① 連接BO并延長(zhǎng),在延長(zhǎng)線上截取OD=BO
② 連接DA、DC,
所以四邊形ABCD就是所求作的平行四邊形。
老師說(shuō):”小敏的作法正確.“
請(qǐng)回答:小敏的作法正確的理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=2x﹣2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo);
(2)點(diǎn)C在x軸上,且S△ABC=3S△AOB , 直接寫出點(diǎn)C坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠B=60°,AB=4,動(dòng)點(diǎn)M以每秒1個(gè)單位的速度從點(diǎn)A出發(fā)運(yùn)動(dòng)到點(diǎn)B,點(diǎn)N以相同的速度從點(diǎn)B出發(fā)運(yùn)動(dòng)到點(diǎn)C,兩點(diǎn)同時(shí)出發(fā),過點(diǎn)M作MP⊥AB交直線CD于點(diǎn)P,連接NM、NP,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),∠NMP=度;
(2)求t為何值時(shí),以A、M、C、P為頂點(diǎn)的四邊形是平行四邊形;
(3)當(dāng)△NPC為直角三角形時(shí),求此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級(jí)m名同學(xué),對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):
(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com