【題目】下面我們做一次折疊活動(dòng):
第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個(gè)正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對(duì)角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過(guò)程,完成下列問(wèn)題:
(1)求CD的長(zhǎng).
(2)請(qǐng)判斷四邊形ABQD的形狀,并說(shuō)明你的理由.
【答案】(1);(2)四邊形ABQD是菱形.
【解析】試題分析:(1)首先證明四邊形MNCB為正方形,然后再依據(jù)折疊的性質(zhì)得到:CA=1,AB=AD,最后再依據(jù)CD=AD-AC求解即可;
(2)根據(jù)平行線的性質(zhì)和折疊的性質(zhì)可得到∠BAQ=∠BQA,然后依據(jù)等角對(duì)等邊的性質(zhì)得到AB=BQ,接下來(lái),依據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形可證明四邊形ABQD是平行四邊形,再由AB=AD,可得四邊形ABQD是菱形.
試題解析:(1)∵∠M=∠N=∠MBC=90°,
∴四邊形MNCB是矩形,
∵M(jìn)B=MN=2,
∴矩形MNCB是正方形,
∴NC=CB=2,
由折疊得:AN=AC=NC=1,
Rt△ACB中,由勾股定理得:AB= =,
∴AD=AB= ,
∴CD=AD﹣AC= ﹣1;
(2)四邊形ABQD是菱形,理由是:
由折疊得:AB=AD,∠BAQ=∠QAD,
∵BQ∥AD,
∴∠BQA=∠QAD,
∴∠BAQ=∠BQA,
∴AB=BQ,
∴BQ=AD,BQ∥AD,
∴四邊形ABQD是平行四邊形,
∵AB=AD,
∴四邊形ABQD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題是( )
A、相等的角是直角 B、不相交的兩條線段平行
C、兩直線平行,同位角互補(bǔ) D、經(jīng)過(guò)兩點(diǎn)有且只有一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,∠ABC=48°,P是∠ABC內(nèi)一定點(diǎn),D、E分別是射線BA、BC上的點(diǎn),當(dāng)△PDE的周長(zhǎng)最小時(shí),∠DPE的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩圓圓心相同,大圓的弦AB與小圓相切,AB=8,則圖中陰影部分的面積是______.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,BC=6,延長(zhǎng)BC至點(diǎn)E,使得CE=8,點(diǎn)F是DE的中點(diǎn),連接CF、OF.
(1)求OF的長(zhǎng).
(2)求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)P (m+3,m-2)在x軸上,那么點(diǎn)P的坐標(biāo)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江津某服裝店今年9月用4000元購(gòu)進(jìn)了一款秋衣若干件,上市后很快售完,服裝店于10月初又購(gòu)進(jìn)同樣數(shù)量的該款秋衣,由于第二批襯衣進(jìn)貨時(shí)價(jià)格比第一批襯衣進(jìn)貨時(shí)價(jià)格提高了20元,結(jié)果第二批襯衣進(jìn)貨用了5000元
(1)第一批秋衣進(jìn)貨時(shí)的價(jià)格是多少?
(2)第一批秋衣售價(jià)為120元/件,為保證第二批襯衣的利潤(rùn)率不低于第一批襯衣的利潤(rùn)率,那么第二批襯衣每件售價(jià)至少是多少元?
(提示:利潤(rùn)=售價(jià)﹣成本,利潤(rùn)率 =)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com