若點(diǎn)C是直線AB任意一點(diǎn),且線段AB=6cm,BC=3cm,則線段AC=________.

3cm或9cm
分析:本題沒(méi)有給出圖形,在畫圖時(shí),應(yīng)考慮到A、B、C三點(diǎn)之間的位置關(guān)系的多種可能,再根據(jù)正確畫出的圖形解題.
解答:本題有兩種情形:
(1)當(dāng)點(diǎn)C在線段AB上時(shí),如圖:AC=AB-BC,
又∵AB=6cm,BC=3cm,
∴AC=6-3=3cm;

(2)當(dāng)點(diǎn)C在線段AB的延長(zhǎng)線上時(shí),如圖:AC=AB+BC,
又∵AB=6cm,BC=3cm,
∴AC=6+3=9cm.

故答案為:3cm或9cm.
點(diǎn)評(píng):本題考查了分類討論的思想,體現(xiàn)了思維的嚴(yán)密性,同時(shí)考查了畫圖,難度較。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,分別交x軸正半軸、y軸正半軸于點(diǎn)B、A,點(diǎn)B的坐標(biāo)為(4
3
,0),點(diǎn)M在⊙C上,并且∠BMO=120度.
(1)求直線AB的解析式;
(2)若點(diǎn)P是⊙C上的點(diǎn),過(guò)點(diǎn)P作⊙C的切線PN,若∠NPB=30°,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是⊙C上任意一點(diǎn),以B為圓心,BD為半徑作⊙B,并且BD的長(zhǎng)為正整數(shù).
①問(wèn)這樣的圓有幾個(gè)?它們與⊙C有怎樣的位置關(guān)系?
②在這些圓中,是否存在與⊙C所交的。ㄖ浮袯上的一條弧)為90°的弧,若存在,請(qǐng)給精英家教網(wǎng)出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l:y=
3
3
x+
3
3
與x軸、y軸分別交于點(diǎn)B、C,以點(diǎn)A(1,0)為圓心,以AB的長(zhǎng)為半徑作⊙A,分別交x軸、y軸正半軸于點(diǎn)D、E,直線l與⊙A交于點(diǎn)F,分別過(guò)點(diǎn)B、F作⊙A的切線交于點(diǎn)M.
精英家教網(wǎng)(1)直接寫出點(diǎn)B、C的坐標(biāo);
(2)求直線MF的解析式;
(3)若點(diǎn)P是
BEF
上任意一點(diǎn)(不與B、F重合).連接BP、FP.過(guò)點(diǎn)M作MN∥PF,交直線l于點(diǎn)N.設(shè)PB=a,MN=b,求b與a的函數(shù)關(guān)系式,并寫出自變量a的取值范圍;
(4)若將(3)中的條件點(diǎn)P是
BEF
上任意一點(diǎn),改為點(diǎn)P是⊙A上任意一點(diǎn),其它條件不變.當(dāng)點(diǎn)P在⊙A上的什么位置時(shí),△BMN為直角三角形,并寫出此時(shí)點(diǎn)N的坐標(biāo).(第(4)問(wèn)直接寫出結(jié)果,不要求證明或計(jì)算過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、若點(diǎn)C是直線AB任意一點(diǎn),且線段AB=6cm,BC=3cm,則線段AC=
3cm或9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)O是直線AB上的任意一點(diǎn),若∠AOC=120°30′,則∠BOC=
59.5
59.5
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案