【題目】為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50/人,非節(jié)假日打折售票,節(jié)假日按團隊人數(shù)分段定價售票,即人以下(含人)的團隊按原價售票;超過人的團隊,其中人仍按原價售票,超過人部分的游客打折售票.設(shè)某旅游團人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).之間的函數(shù)圖象如圖所示.

1)觀察圖象可知:   ;   ;   ;

2)直接寫出之間的函數(shù)關(guān)系式;

3)某旅行社導(dǎo)游王娜于51日帶團,520日(非節(jié)假日)帶團都到該景區(qū)旅游,共付門票款1900元,,兩個團隊合計50人,求,兩個團隊各有多少人?

【答案】1,;(2;(3團有40人,團有10

【解析】

1)根據(jù)函數(shù)圖象,用購票款數(shù)除以定價的款數(shù),計算即可求出a的值;用第11人到20人的購票款數(shù)除以定價的款數(shù),計算即可求出b的值,由圖可求m的值;

2)利用待定系數(shù)法求正比例函數(shù)解析式求出y1,分x10x>10,利用待定系數(shù)法求一次函數(shù)解析式求出y2x的函數(shù)關(guān)系式即可;

3)設(shè)A團有n人,表示出B團的人數(shù)為(50-n),然后分0n10n>10兩種情況,根據(jù)(2)的函數(shù)關(guān)系式列出方程求解即可.

解:(1)在非節(jié)假日,人數(shù)為10人時,總票價為300,所以人均票價為300÷10=30,因為30÷50=0.6,所以打了6折,a=6.

在節(jié)假日,如圖x=10時,票價開始發(fā)生變化,所以m=10,人數(shù)從10人增加到20人,總票價增加了400元,所以此時人均票價為400÷10=40,因為40÷50=0.8,所以打了八折,b=8.

,,

2)在非節(jié)假日,設(shè),將(10,300)代入,可得,解得k1=30,故.

在節(jié)假日,當(dāng)時,,當(dāng)時,設(shè)將(10,500),(20,900)代入,可得,解得,故

所以.

3)設(shè)團有n人,團有人,

則當(dāng)時,根據(jù)題意

解得:,∴不合要求.

當(dāng)時,根據(jù)題意

解得:,∴

團有40人,團有10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線,過點A(1,-3)作直線ly軸,交拋物線于點B,交拋物線于點C,則以下結(jié)論:

(1)拋物線 y軸的交點坐標(biāo)為(0,1)

(2)若點D(-4,m)及點E(7,n)均在拋物線上,則m>n;

(3)若點B在點A的上方,則c>0;

(4)若BC=2,則c=3;

其中結(jié)論正確的是( )

A. (1)(2) B. (2)(3) C. (3)(4) D. (1)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作對角線BD的垂線,垂足為E,點FAD的中點,連接FE并延長交BC于點G

1)求證:;

2)若,,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片折疊,使邊落在對角線上,折痕為,且點落在對角線處.若,,則的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O是直線AB上的一點,∠COE=90°OF是∠AOE的平分線.

1)當(dāng)點C.E.F在直線AB的同側(cè)(如圖1所示)①若∠COF=25°,求∠BOE的度數(shù);②若∠COF=α°,則∠BOE=

2)當(dāng)點C與點E.F在直線AB的兩旁(如圖2所示)時,(1)中第②式的結(jié)論是否仍然成立?請給出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹CD的高度為8.7米.

考點:解直角三角形的應(yīng)用

型】解答
結(jié)束】
23

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于A(2,),B(-1,1)兩點.

(1)分別求出反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象寫出:當(dāng)x為何值時,一次函數(shù)值大于反比例函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關(guān)系式如圖所示.

(1)第20天的總用水量為多少米3

(2)當(dāng)x≥20時,求yx之間的函數(shù)關(guān)系式;

(3)種植時間為多少天時,總用水量達到70003?

查看答案和解析>>

同步練習(xí)冊答案