【題目】某運(yùn)動(dòng)隊(duì)欲從甲、乙兩名優(yōu)秀選手中選一名參加全省射擊比賽,該運(yùn)動(dòng)隊(duì)預(yù)先對(duì)這兩名選手進(jìn)行了8次測(cè)試,測(cè)得的成績?nèi)绫恚?/span>
次數(shù) | 選手甲的成績(環(huán)) | 選手乙的成績(環(huán)) |
1 | 9.6 | 9.5 |
2 | 9.7 | 9.9 |
3 | 10.5 | 10.3 |
4 | 10.0 | 9.7 |
5 | 9.7 | 10.5 |
6 | 9.9 | 10.3 |
7 | 10.0 | 10.0 |
8 | 10.6 | 9.8 |
根據(jù)統(tǒng)計(jì)的測(cè)試成績,請(qǐng)你運(yùn)用所學(xué)過的統(tǒng)計(jì)知識(shí)作出判斷,派哪一位選手參加比賽更好?為什么?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=(x-1)2+1與y軸交于點(diǎn)A,過點(diǎn)A與點(diǎn)(1,3)的直線與C1交于點(diǎn)B
(1) 求直線AB的函數(shù)表達(dá)式
(2) 如圖1,若點(diǎn)P為直線AB下方的C1上一點(diǎn),求點(diǎn)P到直線AB的距離的最大值
(3) 如圖2,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點(diǎn)C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點(diǎn)為D,兩拋物線相交于點(diǎn)E.設(shè)交點(diǎn)E的橫坐標(biāo)為m.若∠AED=90°,求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條開口向下的拋物線的頂點(diǎn)坐標(biāo)是(2,3),則這條拋物線有( )
A.最大值3
B.最小值3
C.最大值2
D.最小值﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點(diǎn)D,經(jīng)過B、D兩點(diǎn)的⊙O交AB 于點(diǎn)E,交BC于點(diǎn)F,EB為⊙O的直徑.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BC=2,cos∠ABC=時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC,BC為邊向外作正方形ACDE,BCFG,DE,F(xiàn)G,弧AC,弧BC的中點(diǎn)分別是M,N,P,Q. 若MP+NQ=14,AC+BC=18,則AB的長是【 】
A. B. C. 13 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.現(xiàn)在要將交ABC 擴(kuò)充成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后等腰三角形的周長.
趙佳同學(xué)是這樣操作的:如圖 1 所示,延長BC 到點(diǎn) D,使CD=BC,連接AD.所以,△ADB 為符合條件的三角形.則此時(shí)△ADB的周長為____________.
請(qǐng)你在圖2、圖3中再設(shè)計(jì)兩種擴(kuò)充方案,并直接寫出擴(kuò)充后等腰三角形的周長.
圖2的周長:______________;圖3的周長:______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com