【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點C逆時針旋轉(zhuǎn)得到△DEC,點A的對應(yīng)點D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________
【答案】60°
【解析】
由旋轉(zhuǎn)的性質(zhì)可得△ABC≌△DEC,則CA=CD,∠CAB=∠CDE,根據(jù)等腰三角形兩底角相等求出∠CDA=∠CAD=75°,可得∠CAB=∠CDE=∠ADE-∠CDA=15°,根據(jù)∠BAD=∠CAD-∠CAB,即可求解.
解:∵將△ABC繞點C逆時針旋轉(zhuǎn)得到△DEC,
∴△ABC≌△DEC,
∴CA=CD,∠CAB=∠CDE,
∵∠ACB=30°,
∴∠CDA=∠CAD=75°,
∵∠ADE=90°,
∴∠CAB=∠CDE=∠ADE-∠CDA=15°,
∴∠BAD=∠CAD-∠CAB=75°-15°=60°.
故答案為:60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把幾個不同的數(shù)用大括號圍起來,中間用逗號斷開,如:{3,4},{-3,6,8,18},我們稱之為集合,其中大括號內(nèi)的數(shù)稱其為集合的元素,如果一個集合滿足:只要其中有一個元素a,使得-2a+4也是這個集合的元素,這樣的集合我們稱為條件集合,例如:集合{3,2},因為-2×3+4=-2,-2恰好是這個集合的元素,所以{3,-2}是條件集合:例如:集合{-2,9,8},因為-2×(-2)+4=8,8恰好是這個集合的元素,所以{-2,9,8}是條件集合.
(1)集合{-4,12}______條件集合;集合{,-, }______條件集合 (填“是”或“不是”)
(2)若集合{8,10,n}是條件集合,求n的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰邊不相等的矩形紙片,剪去一個正方形,余下一個四邊形,稱為第一次操作;在余下的四邊形中減去一個正方形,又余下一個四邊形,稱為第二次操作;…,以此類推,若第n次操作后余下的四邊形是正方形,則稱原矩形是n階矩形.如圖,矩形ABCD中,若AB=1,AD=2,則矩形ABCD是1階矩形.已知一個矩形是2階矩形,較短邊長為2,則較長邊的長度為( )
A. 6 B. 8 C. 5或8 D. 3或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )
A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC=90° D.AG⊥BE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是( )
A. BO=OH B. DF=CE C. DH=CG D. AB=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示:等邊△ABC中,線段AD為其內(nèi)角角平分線,過D點的直線B1C1⊥AC于C1交AB的延長線于B1.
(1)請你探究: ,是否都成立?
(2)請你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內(nèi)角角平分線,請問一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90,AC=8,AB= ,DE∥AC交AB于點E,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知AB∥CD,P為直線AB,CD外一點,BF平分∠ABP,DE平分∠CDP,BF的反向延長線交DE于點E.
(1)∠ABP,∠P和∠PDC的數(shù)量關(guān)系為 ;
(2)若∠BPD=80°,求∠BED的度數(shù);
(3)∠P與∠E的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請計算線段CD的長;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)當(dāng)為何值時反比例函數(shù)值大于一次函數(shù)的值;
(3)當(dāng)為何值時一次函數(shù)值大于比例函數(shù)的值;
(4)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com