如圖直線l過正方形ABCD的頂點B、點A、點C到直線l的距離分別為5和3,則正方形ABCD的面積是
34
34
分析:由ABCD為正方形得到AB=BC,∠ABC為直角,再由AE與CF都垂直于EF,利用同角的余角相等得到一對角相等,再由一對直角相等,;利用AAS得出三角形ABE與三角形BCF全等,由全等三角形對應(yīng)邊相等得到AE=BF,EB=CF,在直角三角形ABE中,利用勾股定理求出AB的長,即可確定出正方形的面積.
解答:解:∵ABCD為正方形,
∴AB=BC,∠ABC=90°,
∵AE⊥EF,CF⊥EF,
∴∠AEB=∠BFC=90°,
∴∠BAE+∠ABE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
∠AEB=∠BFC=90°
∠BAE=∠CBF
AB=CB
,
∴△ABE≌△BCF(AAS),
∴AE=BF=5,CF=EB=3,
根據(jù)勾股定理得:AB=
AE2+EB2
=
34
,
則正方形ABCD面積為34.
故答案為:34
點評:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及勾股定理,熟練掌握正方形的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知正方形ABCD.如圖1,E是AD上一點,過A作BE的垂線,交BE于點O,交CD于點H,通過證明△ABE≌△ADH,可得:BE=AH;
(1)如圖2,E是AD上一點,過BE上一點O作BE的垂線,交AB于點G,交CD于點H,猜想BE與GH的數(shù)量關(guān)系為
BE=GH
;
(2)如圖3,過正方形ABCD內(nèi)任意一點作兩條互相垂直的直線,分別交AD、BC于點E、F,交AB、CD于點G、H,猜想EF與GH的數(shù)量關(guān)系為
EF=GH
;
(3)當(dāng)點O在正方形ABCD的邊上或外部時,過點O作兩條互相垂直的直線,被正方形相對的兩邊(或它們的延長線)截得的兩條線段還相等嗎?其中一種情形如圖4所示,過正方形ABCD外一點O作互相垂直的兩條直線m、n,m與AD、BC的延長線分別交于點E、F,n與AB、DC的延長線分別交于點G、H,試就該圖形對你的結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD.
(1)如圖1,E是AD上一點,過BE上一點O作BE的垂線,交AB于點G,交CD于點H,求證:BE=GH;
(2)如圖2,過正方形ABCD內(nèi)任意一點作兩條互相垂直的直線,分別交AD,BC于點E,F(xiàn),交AB,CD于點G,H,EF與GH相等嗎?請寫出你的結(jié)論;
(3)當(dāng)點O在正方形ABCD的邊上或外部時,過點O作兩條互相垂直的直線,被正方形相對的兩邊(或它們的延長線)截得的兩條線段還相等嗎?其中一種情形如圖3所示,過正方形ABCD外一點O作互相垂直的兩條直線m,n,m與AD,BC的延長線分別交于點E,F(xiàn),n與AB,DC的延長線分別交于點G,H,試就該圖形對你的結(jié)論加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,過正方形ABCD內(nèi)部任意一點O作兩條互相垂直的直線,分別交AD、BC于點E、F,交AB、CD于點G、H,證明:EF=GH;
(2)當(dāng)點O在正方形ABCD的邊上或外部時,過點O作兩條互相垂直的直線,被正方形相對的兩邊(或它們的延長線)截得的兩條線段還相等嗎?圖2是其中一種情形,試就該圖形對你的結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖直線l過正方形ABCD的頂點B、點A、點C到直線l的距離分別為5和3,則正方形ABCD的面積是________.

查看答案和解析>>

同步練習(xí)冊答案