已知正方形ABCD.
(1)如圖1,E是AD上一點(diǎn),過BE上一點(diǎn)O作BE的垂線,交AB于點(diǎn)G,交CD于點(diǎn)H,求證:BE=GH;
(2)如圖2,過正方形ABCD內(nèi)任意一點(diǎn)作兩條互相垂直的直線,分別交AD,BC于點(diǎn)E,F(xiàn),交AB,CD于點(diǎn)G,H,EF與GH相等嗎?請寫出你的結(jié)論;
(3)當(dāng)點(diǎn)O在正方形ABCD的邊上或外部時(shí),過點(diǎn)O作兩條互相垂直的直線,被正方形相對的兩邊(或它們的延長線)截得的兩條線段還相等嗎?其中一種情形如圖3所示,過正方形ABCD外一點(diǎn)O作互相垂直的兩條直線m,n,m與AD,BC的延長線分別交于點(diǎn)E,F(xiàn),n與AB,DC的延長線分別交于點(diǎn)G,H,試就該圖形對你的結(jié)論加以證明.
精英家教網(wǎng)
分析:(1)通過構(gòu)建全等三角形來證明,過點(diǎn)A作GH的平行線,交DC于點(diǎn)H′,交BE于點(diǎn)O′.那么GH=AH′,要證明GH=BE只要證明三角形AH′D和三角形AEB全等即可.這兩個三角形中已知的條件有AD=AB,有一組直角,只要再求出一組對應(yīng)角相等即可得出全等的結(jié)論,我們發(fā)現(xiàn)∠EAO′和∠ABE同為∠BEA的余角,因此∠EAO′=∠ABE,由此就構(gòu)成了全等三角形判定中的ASA,所以兩三角形全等,那么就能得出BE=AH′=GH了;
(2)應(yīng)該相等,作法同(1),只不過要作兩條輔助線,即過D作GH的平行線和過C作EF的平行線,證法和思路與(1)完全一樣,因此結(jié)果也一樣.
(3)也要通過構(gòu)建全等三角形來證明,過點(diǎn)A作m的平行線交BC于點(diǎn)F′,過點(diǎn)D作n的平行線交AB于點(diǎn)G′.因此四邊形AF′FE是個平行四邊形,那么AF′=EF,同理GH=G′D,那么只要證明三角形AG′D和三角形ABF′全等即可,證明的過程和思路與(1)(2)都是一樣的.得出兩三角形全等后,自然EF=GH了.
解答:精英家教網(wǎng)(1)證明:在圖1中,過點(diǎn)A作GH的平行線,交DC于點(diǎn)H′,交BE于點(diǎn)O'.
∵ABCD是正方形,
∴∠D=90°,∠H′AD+∠AH′D=90°.
∵GH⊥BE,AH′∥GH,
∴AH′⊥BE.
∴∠H′AD+∠BEA=90°.
∴∠BEA=∠AH′D.
在△BAE和△ADH′中,
∠BAE=∠D
∠BEA=∠AH′D
BA=AD

∴△BAE≌△ADH′(AAS),
∴BE=AH′=GH;
精英家教網(wǎng)
(2)解:EF=GH,理由如下:
過E作EM⊥BC,過G作GN⊥CD,
∴∠EMF=∠GNH=90°,
又GH⊥EF,∴∠EOG=∠GOF=90°,
∴∠MEF+∠EQG=90°,∠NGH+∠EQG=90°,
∴∠MEF=∠NGH,又GN=EM,
∴△EMF≌△GNH,
∴EF=GH;

(3)解:相等.
證明:在圖3中,過點(diǎn)A作m的平行線交BC于點(diǎn)F′,過點(diǎn)D作n的平行線交AB于點(diǎn)G′.
則有EF=AF′,G′D=GH,
由(1)可知,Rt△ABF′≌Rt△DAG′,
∴AF′=DG′.
從而可證明EF=GH.
點(diǎn)評:本題考查了正方形的性質(zhì)和全等三角形的判定,本題中利用構(gòu)建全等三角形來證明線段相等是解題的基本思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知正方形ABCD中,對角線AC、BD交于O點(diǎn),過O點(diǎn)作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線EP交直線AC于P.
(1)①求證:OE=OF;
②寫出線段EF、PC、BC之間的一個等量關(guān)系式,并證明你的結(jié)論;
(2)如圖2,當(dāng)∠EOF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)一個角度,使E、F分別在CD、BC的延長線上,請完成圖形并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫出相應(yīng)的結(jié)論(所寫結(jié)論均不必證明).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長與Rt△EFG的直角邊EF的長均為4cm,F(xiàn)G=8cm,AB與FG在同一條直線l上、開始時(shí)點(diǎn)F與點(diǎn)B重合,讓Rt△EFG以每秒1cm速度在直線l上從右往左移動,精英家教網(wǎng)直至點(diǎn)G與點(diǎn)B重合為止.設(shè)x秒時(shí)Rt△EFG與正方形ABCD重疊部分的面積記為ycm2
(1)當(dāng)x=2秒時(shí),求y的值;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正方形ABCD的邊長為4厘米,E,F(xiàn)分別為邊DC,BC上的點(diǎn),BF=1厘米,CE=2厘米,BE,DF相交于點(diǎn)G,求四邊形CEGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•惠山區(qū)一模)閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點(diǎn),且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補(bǔ)短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點(diǎn)F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進(jìn)一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請你將下面的證明過程補(bǔ)充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點(diǎn)時(shí),試問F為BC的幾等分點(diǎn)?并求此時(shí)F點(diǎn)的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時(shí),直接寫出直線EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD邊長為2,E、F、G、H分別為各邊上的點(diǎn),且AE=BF=CG=DH.
(1)求證:△EBF≌△FCG;
(2)設(shè)四邊形EFGH的面積為s,AE為x,求s與x的函數(shù)解析式,并寫出x的取值范圍;
(3)當(dāng)x為何值時(shí),正方形EFGH的面積最小?最小值是多少?

查看答案和解析>>

同步練習(xí)冊答案