【題目】已知二次出數(shù)的圖象與軸交于點、且,與軸的正半軸的交點在的下方,則①,②,③,④,其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
根據(jù)已知畫出圖象,把x=-2代入得:4a-2b+c=0,2a+c=2b-2a;把x=-1代入得到a-b+c>0;根據(jù)-<0,推出a<0,b<0,a+c>b,計算2a+c=2b-2a>0;代入得到2a-b+1=-c+1>0,根據(jù)結(jié)論判斷即可.
根據(jù)二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(-2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,畫出圖象為:如圖
把x=-2代入得:4a-2b+c=0,∴①正確;
把x=-1代入得:y=a-b+c>0,又如圖A點,a-b>-c<0,∴②不正確;
∵(-2,0)、(x1,0),且1<x1<2,
∴取符合條件1<x1<2的任何一個x1,-2x1<-2,
∴由一元二次方程根與系數(shù)的關(guān)系知 x1x2=<-2,
∴不等式的兩邊都乘以a(a<0)得:c>-2a,
∴2a+c>0,∴③正確;
④由4a-2b+c=0得 2a-b=-,
而0<c<2,∴-1<-<0
∴-1<2a-b<0
∴2a-b+1>0,
∴④正確.
所以①③④三項正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是一個嚴(yán)重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應(yīng)交水費y元.
(1)若0<x≤6,請寫出y與x的函數(shù)關(guān)系式.
(2)若x>6,請寫出y與x的函數(shù)關(guān)系式.
(3)在同一坐標(biāo)系下,畫出以上兩個函數(shù)的圖象.
(4)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.
(1)先作的平分線交邊于點,再以點為圓心,長為半徑作⊙.
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中與⊙的位置關(guān)系,并證明你的結(jié)論.
(3)若,,求出(1)中⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①同一個人在相同的條件下做同一個實驗,第一天做了次,第二天做了次,對這一實驗中的同一事件來說,這兩天出現(xiàn)的頻率相等;
②投擲骰子,偶數(shù)朝上的概率是;
③如果一個袋里裝有個紅球,個白球,從中任取個,因為取出的球不是紅球,就是白球,所以取出紅球的概率是.
其中正確的有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA和BC的平行線,兩線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一座拋物線型的拱橋,AB、CD分別表示兩個不同位置的水面寬度,O為拱橋頂部,水面AB寬為10米,AB距橋頂O的高度為12.5米,水面上升2.5米到達(dá)警戒水位CD位置時,水面寬為( )米.
A. 5 B. 2 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點A與x軸平行的直線交拋物線y=于點B、C,線段BC的長度為6,拋物線y=﹣2x2+b與y軸交于點A,則b=( 。
A. 1 B. 4.5 C. 3 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為的直徑,、為的切線,、為切點,交于點,的延長線交于點,連接、.給出以下結(jié)論:①;②;③點為的內(nèi)心.其中正確的是________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在半圓O中,AB為直徑,P為弧AB的中點,分別在弧AP和弧PB上取中點A1和B1,再在弧PA1和弧PB1上分別取中點A2和B2,若一直這樣取中點,求∠AnPBn=__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com