【題目】小明在做課本中的一道題:如圖1,直線a,b所成的角跑到畫板外面去了,你有什么辦法量出這兩條直線所成的角的度數(shù)?小明的做法是:如圖2,畫PC∥a,量出直線b與PC的夾角度數(shù),即直線a,b所成角的度數(shù).
(1)請寫出這種做法的理由.
(2)小明在此基礎(chǔ)上又進(jìn)行了如下操作和探究(如圖3):
①以P為圓心,任意長為半徑畫圓弧,分別交直線b,PC于點A,D.
②連接AD并延長交直線a于點B,請直接寫出圖3中所有與∠PAB相等的角.
(3)請在圖3畫板內(nèi)作出“直線a,b所成的跑到畫板外面去的角”的平分線(畫板內(nèi)的部分),只要求作出圖形,并保留作圖痕跡.
【答案】(1)兩直線平行,同位角相等;(2)∠PDA=∠BDC=∠1;(3)作圖見解析.
【解析】
試題(1)根據(jù)平行線的性質(zhì)得出即可;
(2)根據(jù)題意,有3個角與∠PAB相等.由等腰三角形的性質(zhì),可知∠PAB=∠PDA;又對頂角相等,可知∠BDC=∠PDA;由平行線性質(zhì),可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;
(3)作出線段AB的垂直平分線EF,由等腰三角形的性質(zhì)可知,EF是頂角的平分線,故EF即為所求作的圖形.
試題解析:(1)PC∥a(兩直線平行,同位角相等);
(2)∠PAB=∠PDA=∠BDC=∠1,
如圖,∵PA=PD,
∴∠PAB=∠PDA,
∵∠BDC=∠PDA(對頂角相等),
又∵PC∥a,
∴∠PDA=∠1,
∴∠PAB=∠PDA=∠BDC=∠1;
(3)如圖,作線段AB的垂直平分線EF,則EF是所求作的圖形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某項針對18﹣35歲的青年人每天發(fā)微博數(shù)量的調(diào)查中,設(shè)一個人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當(dāng)0≤m<5時為A級,5≤m<10時為B級,10≤m<15時為C級,m≥15時為D級.現(xiàn)隨機(jī)抽取部分符合年齡條件的青年人開展每人“日均發(fā)微博條數(shù)”的調(diào)查,制作圖表如下: 18﹣35歲青年人日均發(fā)微博條數(shù)統(tǒng)計表
m | 頻數(shù) | 百分?jǐn)?shù) |
A級(0≤m<5) | 90 | 0.3 |
B級(5≤m<10) | 120 | a |
C級(10≤m<15) | b | 0.2 |
D級(m≥15) | 30 | 0.1 |
請你根據(jù)以上信息解答下列問題:
(1)求a,b;
(2)補(bǔ)全頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有8個班,241名同學(xué),歷史老師為了了解新中考模式下該校八年級學(xué)生選修歷史學(xué)科的意向,請小紅,小亮,小軍三位同學(xué)分別進(jìn)行抽樣調(diào)查.三位同學(xué)調(diào)查結(jié)果反饋如下:
小紅、小亮和小軍三人中,你認(rèn)為哪位同學(xué)的調(diào)查結(jié)果較好地反映了該校八年級同學(xué)選修歷史的意向,請說出理由,并由此估計全年級有意向選修歷史的同學(xué)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: 厲害了,我的國!
近年來,中國對外開放的步伐加快,與世界經(jīng)濟(jì)的融合度日益提高,中國經(jīng)濟(jì)穩(wěn)定增長是世界經(jīng)濟(jì)復(fù)蘇的主要動力.“十二五”時期,按照2010年美元不變價計算,中國對世界經(jīng)濟(jì)增長的年均貢獻(xiàn)率達(dá)到30.5%,躍居全球第一,與“十五”和“十一五”時期14.2%的年均貢獻(xiàn)率相比,提高16.3個百分點,同期美國和歐元區(qū)分別為17.8%和4.4%.分年度來看,2011、2012、2013、2014、2015年,中國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率分別為28.6%、31.7%、32.5%、29.7%、30.0%,而美國分別為11.8%、20.4%、15.2%、19.6%、21.9%.
2016年,中國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率仍居首位,預(yù)計全年經(jīng)濟(jì)增速為6.7%左右,而世界銀行預(yù)測全球經(jīng)濟(jì)增速為2.4%左右.按2010年美元不變價計算,2016年中國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率仍然達(dá)到33.2%.如果按照2015年價格計算,則中國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率會更高一點,根據(jù)有關(guān)國際組織預(yù)測,2016年中國、美國、日本經(jīng)濟(jì)增速分別為6.7%、1.6%、0.6%.
根據(jù)以上材料解答下列問題:
(1)選擇合適的統(tǒng)計圖或統(tǒng)計表將2013年至2015年中國和美國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率表示出來;
(2)根據(jù)題中相關(guān)信息,2016年中國經(jīng)濟(jì)增速大約是全球經(jīng)濟(jì)增速的倍(保留1位小數(shù));
(3)根據(jù)題中相關(guān)信息,預(yù)估2017年中國對世界經(jīng)濟(jì)增長的貢獻(xiàn)率約為 , 你的預(yù)估理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y= 的圖象與性質(zhì). 下面是小文的探究過程,請補(bǔ)充完整:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … |
y | … | ﹣ | ﹣ | ﹣ | 0 | 2 |
|
|
| … |
如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.
①觀察圖中各點的位置發(fā)現(xiàn):點A1和B1 , A2和B2 , A3和B3 , A4和B4均關(guān)于某點中心對稱,則該點的坐標(biāo)為;
②小文分析函數(shù)y= 的表達(dá)式發(fā)現(xiàn):當(dāng)x<1時,該函數(shù)的最大值為0,則該函數(shù)圖象在直線x=1左側(cè)的最高點的坐標(biāo)為;
(3)小文補(bǔ)充了該函數(shù)圖象上兩個點( ,﹣ ),( , ), ①在上圖中描出這兩個點,并畫出該函數(shù)的圖象;
②寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來由于空氣質(zhì)量的變化,以及人們對自身健康的關(guān)注程度不斷提高,空氣凈化器成為很多家庭的新電器.某品牌的空氣凈化器廠家為進(jìn)一步了解市場,制定生產(chǎn)計劃,根據(jù)2016年下半年銷售情況繪制了如下統(tǒng)計圖,其中同比增長率=( ﹣1)×100%,下面有四個推斷:
①2016年下半年各月銷售量均比2015年同月銷售量增多
②第四季度銷售量占下半年銷售量的七成以上
③下半年月均銷售量約為16萬臺
④下半年月銷售量的中位數(shù)不超過10萬臺
其中合理的是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘一名部門經(jīng)理,對A、B、C三位候選人進(jìn)行了三項測試,包括語言表達(dá)、微機(jī)操作、商品知識,各項成績的權(quán)重分別是3,3,4,三人的成績?nèi)缦卤恚?
候選人 | 語言表達(dá) | 微機(jī)操作 | 商品知識 |
A | 60 | 80 | 70 |
B | 50 | 70 | 80 |
C | 60 | 80 | 65 |
請你通過計算分析一下誰會被錄取?若想要B被錄取,如何設(shè)計各種成績的權(quán)重?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= 相交于點A(m,3),B(﹣6,n),與x軸交于點C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點P在x軸上,且S△ACP= S△BOC , 求點P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com