已知正比例函數(shù)y=kx與反比例函數(shù)y=相交于點(diǎn)A(1,b)、點(diǎn)B(c,-2),求k+a的值.甲同學(xué)說:未知數(shù)太多,很難求的;乙同學(xué)說:可能不是用待定系數(shù)法來求;丙說:如果用數(shù)形結(jié)合的方法,利用兩交點(diǎn)在坐標(biāo)系中位置的特殊性,可以試試.請結(jié)合他們的討論求出k+a=   
【答案】分析:把A(1,b)代入得出b=k,a=b,求出k=a=b,把B(c,-2)代入得:-2=ck,-2=,求出ck=-2,a=-2c,推出-2c=,求出c的值,即可求出k和a的值,再代入求出即可.
解答:解:把A(1,b)代入得:b=k,a=b×1=b,
∴k=a=b,
把B(c,-2)代入得:-2=ck,-2=,
∴ck=-2,a=-2c,
∴k=-2c=,
解得:c=±1,
當(dāng)c=1時(shí),k=a=b=-2c=-2,
k+a=-2+(-2)=-4;
當(dāng)c=-1時(shí),k=a=b=-2c=2,
k+a=2+2=4.
故答案為:-4或4.
點(diǎn)評(píng):本題考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問題和圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn),主要考查學(xué)生的化簡能力和理解能力,題目比較好,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)y=
k2
x
(k2≠0)的圖象有一個(gè)交點(diǎn)的坐標(biāo)為(-2,-1),則它的另一個(gè)交點(diǎn)的坐標(biāo)是( 。
A、(2,1)
B、(-2,-1)
C、(-2,1)
D、(2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正比例函數(shù)y=
1
2
x
與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn),點(diǎn)A的精英家教網(wǎng)橫坐標(biāo)為2.
(1)請判斷點(diǎn)B的坐標(biāo)是否為(-2,-1);
(2)請直接寫出關(guān)于x的不等式
k
x
1
2
x
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn)B(6,m),求m的值和這個(gè)一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點(diǎn)的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•上海)已知正比例函數(shù)y=kx(k≠0),點(diǎn)(2,-3)在函數(shù)上,則y隨x的增大而
減小
減小
(增大或減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y=(m-1)x5-m2的圖象在第二、第四象限,則m的值為
-2
-2

查看答案和解析>>

同步練習(xí)冊答案