某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.

解:(1)由題意得,銷售量=250-10(x-25)=-10x+500,
則w=(x-20)(-10x+500)
=-10x2+700x-10000;

(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函數(shù)圖象開口向下,w有最大值,
當x=35時,wmax=2250,
故當單價為35元時,該文具每天的利潤最大;

(3)A方案利潤高.理由如下:
A方案中:20<x≤30,
故當x=30時,w有最大值,
此時wA=2000;
B方案中:,
故x的取值范圍為:45≤x≤49,
∵函數(shù)w=-10(x-35)2+2250,對稱軸為x=35,
∴當x=45時,w有最大值,
此時wB=1250,
∵wA>wB,
∴A方案利潤更高.
分析:(1)根據(jù)利潤=(單價-進價)×銷售量,列出函數(shù)關系式即可;
(2)根據(jù)(1)式列出的函數(shù)關系式,運用配方法求最大值;
(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.
點評:本題考查了二次函數(shù)的應用,難度較大,最大銷售利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.其中要注意應該在自變量的取值范圍內求最大值(或最小值),也就是說二次函數(shù)的最值不一定在x=時取得.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•青島)某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題

某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件

(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;

(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;

(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案

方案A:該文具的銷售單價高于進價且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元

請比較哪種方案的最大利潤更高,并說明理由

 

查看答案和解析>>

科目:初中數(shù)學 來源:青島 題型:解答題

某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年山東省青島市中考數(shù)學試卷(解析版) 題型:填空題

某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

同步練習冊答案