【題目】定義:有一組鄰邊均和一條對(duì)角線(xiàn)相等的四邊形叫做鄰和四邊形.
(1)如圖1,四邊形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求證:四邊形ABCD是鄰和四邊形.
(2)如圖2,是由50個(gè)小正三角形組成的網(wǎng)格,每個(gè)小正三角形的頂點(diǎn)稱(chēng)為格點(diǎn),已知A,B,C三點(diǎn)的位置如圖,請(qǐng)?jiān)诰W(wǎng)格圖中標(biāo)出所有的格點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形為鄰和四邊形.
(3)如圖3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一點(diǎn)D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)24或16.
【解析】
(1)根據(jù)題意先由三角形的內(nèi)角和為180°求得∠ACB的度數(shù),從而根據(jù)等腰三角形的判定證得AB=AC=AD,按照鄰和四邊形的定義即可得出結(jié)論;
(2)根據(jù)題意以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)圓,與網(wǎng)格的交點(diǎn),以及△ABC外側(cè)與點(diǎn)B和點(diǎn)C組成等邊三角形的網(wǎng)格點(diǎn)即為所求;
(3)由題意先根據(jù)勾股定理求得AC的長(zhǎng),再分類(lèi)計(jì)算即可:①當(dāng)DA=DC=AC時(shí);②當(dāng)CD=CB=BD時(shí);③當(dāng)DA=DC=DB或AB=AD=BD時(shí).
解:(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,
∴∠ACB=∠ABC,
∴AB=AC.
∵∠ACD=∠ADC,
∴AC=AD,
∴AB=AC=AD.
∴四邊形ABCD是鄰和四邊形.
(2)如圖,格點(diǎn)D,D',D'即為所求作的點(diǎn).
(3)∵在△ABC中,∠ABC=90°,AB=4,BC=4,
∴AC==8,
顯然AB,BC,AC互不相等.分兩種情況討論:
①當(dāng)DA=DC=AC時(shí),如圖所示:
∴S△ADC=AC2=16,S△ABC=AB×BC=8.
∴S四邊形ABCD=S△ADC+S△ABC=24;
②當(dāng)CD=CB=BD時(shí),如圖所示:
∴S△BDC=BC2=12,S△ADB=AB(BC)=4,
∴S四邊形ABCD=S△BDC+S△ADB=16;
③當(dāng)DA=DC=DB或AB=AD=BD時(shí),鄰和四邊形ABCD不存在.
∴鄰和四邊形ABCD的面積是24或16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器商場(chǎng)銷(xiāo)售A,B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40元. 商場(chǎng)銷(xiāo)售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)76元;銷(xiāo)售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利120元.
(1)求商場(chǎng)銷(xiāo)售A,B兩種型號(hào)計(jì)算器的銷(xiāo)售價(jià)格分別是多少元?(利潤(rùn)=銷(xiāo)售價(jià)格﹣進(jìn)貨價(jià)格)
(2)商場(chǎng)準(zhǔn)備用不多于2500元的資金購(gòu)進(jìn)A,B兩種型號(hào)計(jì)算器共70臺(tái),問(wèn)最少需要購(gòu)進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜批發(fā)公司用實(shí)際行動(dòng)支持抗擊新冠肺炎疫情,為確保市民在疫情期間的蔬菜供應(yīng),以平均每噸萬(wàn)元的價(jià)格購(gòu)進(jìn)一批蔬菜,已知這批蔬菜通過(guò)網(wǎng)絡(luò)在市場(chǎng)上的日銷(xiāo)售量(噸)與銷(xiāo)售價(jià)格(萬(wàn)元/噸)之間的函數(shù)關(guān)系如下圖所示.
(1)求日銷(xiāo)售量與銷(xiāo)售價(jià)格之間的函數(shù)關(guān)系式; (不要求寫(xiě)的取值范圍)
(2)如果要確保日銷(xiāo)售量不小于噸,求最大毛利潤(rùn).(假設(shè):毛利潤(rùn)=銷(xiāo)售額-購(gòu)進(jìn)成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家提出的“每天鍛煉1小時(shí)”的號(hào)召,某校積極開(kāi)展了形式多樣的“陽(yáng)光體育”運(yùn)動(dòng),毛毛對(duì)該班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì)(每人只能選其中一項(xiàng)),并繪制了如圖兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)毛毛這次一共調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“足球”所在扇形的圓心角度數(shù);
(3)若該校有1800名學(xué)生,請(qǐng)估計(jì)該校喜歡乒乓球的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點(diǎn) A 沿逆時(shí)針?lè)较蛐D(zhuǎn) 90°得到AD,邊 BC 繞點(diǎn) B 沿順時(shí)針?lè)较蛐D(zhuǎn) 90°得到 BE,作 DM⊥AB 于點(diǎn) M,EN⊥AB于 點(diǎn) N, 若 AB=10,EN=4, 則 DM=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)和點(diǎn).
(1)求的值及點(diǎn)的坐標(biāo);
(2)若點(diǎn)是軸上一點(diǎn),且,直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)為A、C在雙曲線(xiàn)y1=上,B、D在雙曲線(xiàn)上,k1=2k2(k1>0),AB∥y軸,=24,則k2的值為( )
A.4B.-4C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,點(diǎn)O在斜邊AB上,以O為圓心,OB長(zhǎng)為半徑作⊙O,與BC交于點(diǎn)D,連結(jié)AD,已知.
(1)求證:AD是⊙O的切線(xiàn);
(2)若BC=8,,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),連接AE,將△ABE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)得到△A1B1E,點(diǎn)B1在正方形ABCD內(nèi),連接AA1、BB1;
(1)求證:△AA1E∽△BB1E;
(2)延長(zhǎng)BB1分別交線(xiàn)段AA1,DC于點(diǎn)F、G,求證:AF=A1F;
(3)在(2)的條件下,若AB=4,BE=1,G是DC的中點(diǎn),求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com