,求證:x-2y+z=0.

答案:略
解析:

證法1

證法2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀下面的材料再完成下列各題
我們知道,若二次函數(shù)y=ax2+bx+c對(duì)任意的實(shí)數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.
(1)求證:(a12+a22+…+an2)•(b12+b22+…+bn2)≥(a1•b1+a2•b2+…+an•bn2
(2)若x+2y+3z=6,求x2+y2+z2的最小值;
(3)若2x2+y2+z2=2,求x+y+z的最大值;
(4)指出(2)中x2+y2+z2取最小值時(shí),x,y,z的值(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)B、C兩點(diǎn)的直線是y=
1
2
x-2
,連接AC.
(1)B、C兩點(diǎn)坐標(biāo)分別為B
(4,0)
(4,0)
、C
(0,-2)
(0,-2)
,拋物線的函數(shù)關(guān)系式為
y=
1
2
x2-
3
2
x-2
y=
1
2
x2-
3
2
x-2
;
(2)求證:△AOC∽△COB;
(3)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PAC的周長(zhǎng)最?若存在,請(qǐng)求出來(lái),若不存在,請(qǐng)說(shuō)明理由.
(4)在該拋物線上是否存在點(diǎn)Q,使得S△ABC=S△ABQ?若存在,請(qǐng)求出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo) 讀想練同步測(cè)試 七年級(jí)數(shù)學(xué)(下) 北師大版 題型:047

若(z-x)2-4(x-y)(y-z)=0,求證:x-2y+z=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:047

,求證:x-2y+z=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案