閱讀理解:
學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化,類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad),如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=。容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的. 根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°的值為( )
A.
B.1
C.
D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是_________;
(3)已知,其中α為銳角,試求sadα的值。
解: (1)B;
(2)
(3) 如圖,作腰上的高CD,
,
可設(shè)CD=3k,則AC=5k,
由勾股定理AD=4k,故BD=k,
在Rt△BDC中由勾股定理得BC=k,
∴sadα=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°的值為( 。〢.
1
2
  B.1  C.
3
2
D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
1
2
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請(qǐng)直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江天臺(tái)中片教研區(qū)九年級(jí)第四次模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA ,這時(shí)sadA=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.  根據(jù)上述關(guān)于角的正對(duì)定義,解決下列問(wèn)題:

【小題1】sad的值為(   ▲ )

A.B.1 C.D.2
【小題2】對(duì)于,∠A的正對(duì)值sadA的取值范圍是(  ▲   )
A.B.C.
D.
【小題3】已知,如圖,在△ABC中,∠ACB為直角,,AB=25試求sadA的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年南京市六合區(qū)中考數(shù)學(xué)一模試卷 題型:解答題

(本小題滿(mǎn)分10分)

    學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為(   )A.       B. 1  C.      D. 2

 

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是         .

(3)已知,其中為銳角,試求sad的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案