一個扇形的面積與對應(yīng)圓的面積比等于圓心角的度數(shù)n與360的比,即S扇形:S=n:360.根據(jù)上面提供的公式計算一個半徑為10的圓中,圓心角為60°的扇形的面積為________.


分析:由題中給出的條件可求出圓的面積,再根據(jù)題中的面積比就可求出.
解答:圓的面積為:100π
根據(jù)S扇形:S=n:360可得:

解得S扇形=
點評:本題關(guān)鍵是先由已知條件求出圓的面積,然后利用扇形與圓的面積比,求出扇形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一個扇形的面積與對應(yīng)圓的面積比等于圓心角的度數(shù)n與360的比,即S扇形:S=n:360.根據(jù)上面提供的公式計算一個半徑為10的圓中,圓心角為60°的扇形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公園在一個扇形OEF草坪上的圓心O處垂直于草坪的地上豎一根柱子OA,在A處安裝一個自動噴水裝置.噴頭向外噴水.連噴頭在內(nèi),柱高
10
9
m,水流在各個方向上沿形狀相同的拋物線路徑落下,噴出的水流在與D點的水平距離4米處達(dá)到最高點B,點B距離地面2米.當(dāng)噴頭A旋轉(zhuǎn)120°時,這個草坪可以全被水覆蓋.如圖1所示.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,使A點的坐標(biāo)為(O,
10
9
),水流的最高點B的坐標(biāo)為(4,2),求出此坐標(biāo)系中拋物線水流對應(yīng)的函數(shù)關(guān)系式;
(2)求噴水裝置能噴灌的草坪的面積(結(jié)果用π表示);
(3)在扇形OEF的一塊三角形區(qū)域地塊△OEF中,現(xiàn)要建造一個矩形GHMN花壇,如圖2的設(shè)計方案是使H、G分別在OF、OE上,MN在EF上.設(shè)MN=2x,當(dāng)x取何值時,矩形GHMN花壇的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公園在一個扇形OEF草坪上的圓心O處垂直于草坪的地上豎一根柱子OA,在A處安裝一個自動噴水裝置.噴頭向外噴水.連噴頭在內(nèi),柱高數(shù)學(xué)公式m,水流在各個方向上沿形狀相同的拋物線路徑落下,噴出的水流在與D點的水平距離4米處達(dá)到最高點B,點B距離地面2米.當(dāng)噴頭A旋轉(zhuǎn)120°時,這個草坪可以全被水覆蓋.如圖1所示.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,使A點的坐標(biāo)為(O,數(shù)學(xué)公式),水流的最高點B的坐標(biāo)為(4,2),求出此坐標(biāo)系中拋物線水流對應(yīng)的函數(shù)關(guān)系式;
(2)求噴水裝置能噴灌的草坪的面積(結(jié)果用π表示);
(3)在扇形OEF的一塊三角形區(qū)域地塊△OEF中,現(xiàn)要建造一個矩形GHMN花壇,如圖2的設(shè)計方案是使H、G分別在OF、OE上,MN在EF上.設(shè)MN=2x,當(dāng)x取何值時,矩形GHMN花壇的面積最大?最大面積是多少?
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個扇形的面積與對應(yīng)圓的面積比等于圓心角的度數(shù)n與360的比,即S扇形:S=n:360.根據(jù)上面提供的公式計算一個半徑為10的圓中,圓心角為60°的扇形的面積為______.

查看答案和解析>>

同步練習(xí)冊答案