某公園在一個扇形OEF草坪上的圓心O處垂直于草坪的地上豎一根柱子OA,在A處安裝一個自動噴水裝置.噴頭向外噴水.連噴頭在內(nèi),柱高
m,水流在各個方向上沿形狀相同的拋物線路徑落下,噴出的水流在與D點的水平距離4米處達到最高點B,點B距離地面2米.當(dāng)噴頭A旋轉(zhuǎn)120°時,這個草坪可以全被水覆蓋.如圖1所示.
(1)建立適當(dāng)?shù)淖鴺讼,使A點的坐標為(O,
),水流的最高點B的坐標為(4,2),求出此坐標系中拋物線水流對應(yīng)的函數(shù)關(guān)系式;
(2)求噴水裝置能噴灌的草坪的面積(結(jié)果用π表示);
(3)在扇形OEF的一塊三角形區(qū)域地塊△OEF中,現(xiàn)要建造一個矩形GHMN花壇,如圖2的設(shè)計方案是使H、G分別在OF、OE上,MN在EF上.設(shè)MN=2x,當(dāng)x取何值時,矩形GHMN花壇的面積最大?最大面積是多少?