如圖,已知直線y=x與拋物線y=x2交于A、B兩點.

(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=x2的函數(shù)值為y2.若y1>y2,求x的取值范圍.

(1) A(0,0),B(2,2);(2) 0<x<2.

解析試題分析:(1)聯(lián)立兩函數(shù)解析式求解即可得到點A、B的坐標;
(2)根據(jù)函數(shù)圖象寫出直線在拋物線上方部分的x的取值范圍即可.
試題解析: (1)∵直線y=x與拋物線y=x2交于A、B兩點,
∴x=x2解得,x1=0,x2=2,
當x1=0時,y1=0,x2=2時,y2=2
∴A(0,0),B(2,2);
(2)由(1)知,A(0,0),B(2,2).
∵一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=x2的函數(shù)值為y2
∴當y1>y2時,根據(jù)圖象可知x的取值范圍是:0<x<2
考點: 1.二次函數(shù)與不等式(組);2.二次函數(shù)的性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,在直角坐標平面內,O為原點,拋物線經過點A(6,0),且頂點B(m,6)在直線上.
(1)求m的值和拋物線的解析式;
(2)如在線段OB上有一點C,滿足,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內有另一點N,且以O、E、M、N為頂點的四邊形是菱形,請直接寫出點N的坐標.
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知點A(1,2)和B(-2,5),試求出兩個二次函數(shù),使它們的圖象都經過A、B兩點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線y=-2x+4與x軸、y軸分別相交于A、C兩點,拋物線y=-2x2+bx+c (a≠0)經過點A、C.

(1)求拋物線的解析式;
(2)設拋物線的頂點為P,在拋物線上存在點Q,使△ABQ的面積等于△APC面積的4倍.求出點Q的坐標;
(3)點M是直線y=-2x+4上的動點,過點M作ME垂直x軸于點E,在y軸(原點除外)上是否存在點F,使△MEF為等腰直角三角形? 若存在,求出點F的坐標及對應的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元.則每個月少賣10件。設每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1) 求y與x的函數(shù)關系式
(2) 每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3) 若每個月的利潤不低于2160元,售價應在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直角坐標系中Rt△ABO,其頂點為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點O逆時針旋轉90°,得到Rt△A′B′O.

(1)一拋物線經過點A′、B′、B,求該拋物線的解析式;
(2)設點P是在第一象限內拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知OA=12cm,OB=6cm,點P從O點開始沿OA邊向點A以1cm/s的速度移動:點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(),那么:

(1)設△POQ的面積為,求關于的函數(shù)解析式。
(2)當△POQ的面積最大時,△  POQ沿直線PQ翻折后得到△PCQ,試判斷點C是否落在直線AB上,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求此拋物線的解析式;
(2)拋物線上是否存在點P,使,若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

動物園計劃用長為120米的鐵絲圍成如圖所示的兔籠,(不包括頂棚)供學習小組的同學參觀,其中一面靠墻,(墻足夠長)怎樣設計圍成的面積最大?

查看答案和解析>>

同步練習冊答案