【題目】已知二次函數(shù)yax2+bx+ca0),過(1,y1)、(2,y2).下列結(jié)論:y10時(shí),則a+b+c0; a2b時(shí),則y1y2;y10y20,且a+b0,則a0.其中正確的結(jié)論個(gè)數(shù)為( 。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

【答案】C

【解析】

①將點(diǎn)(1y1)代入函數(shù)解析式,結(jié)合y10,即可得到結(jié)論.

②若a2b時(shí),可求對稱軸x,分兩種情況進(jìn)行討論,即可得結(jié)論.

③由ab0,分兩種情況討論對稱軸與函數(shù)圖象開口的關(guān)系,結(jié)合函數(shù)圖象確定y1y2的正負(fù)性.

①將點(diǎn)(1,y1)代入二次函數(shù)yax2+bx+c,

得到y1a+b+c,

y10

a+b+c0

故①正確.

②若a2b時(shí),函數(shù)對稱軸x,

當(dāng)a0時(shí),y1y2,

當(dāng)a0時(shí),y1y2

故②錯(cuò)誤.

③∵a+b0,

a<﹣b

當(dāng)a0時(shí),,此時(shí)只能y10,y20;

當(dāng)a0時(shí),,此時(shí)只能y10y20;

所以y10,y20,且a+b0時(shí),a0

故③正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,定義:直線 (m<0, n>0) x、y軸分別相交于A、B兩點(diǎn),將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過點(diǎn)A、B、D的拋物線P叫做直線l的“糾纏拋物線”,反之,直線l叫做P的“糾纏直線”,兩線“互為糾纏線”。

1 ,則糾纏拋物線P的函數(shù)解析式是

2 判斷并說明是否“互為糾纏線”.

3 如圖②,若糾纏直線,糾纏拋物線P的對稱軸與CD相交于點(diǎn)E,點(diǎn)Fl上,點(diǎn)QP的對稱軸上,當(dāng)以點(diǎn)CE、QF為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

4 如圖③,在(3)的條件下,G為線段AB上的一個(gè)動點(diǎn),G點(diǎn)隨著△AOB旋轉(zhuǎn)到線段CD上的H點(diǎn),連接HG,取HG的中點(diǎn)M,當(dāng)點(diǎn)GA開始運(yùn)動到B點(diǎn),直接寫出點(diǎn)M的運(yùn)動路徑長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,ABAC,AD平分∠BAC,點(diǎn)GBA延長線上一點(diǎn),點(diǎn)FAC上一點(diǎn),AGAF,連接GF并延長交BCE

(1)AB8,BC6,求AD的長;

(2)求證:GEBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC分別在xy軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2)點(diǎn)M是邊BC上的一個(gè)動點(diǎn)(不與B、C重合),反比例函數(shù)k0,x0)的圖象經(jīng)過點(diǎn)M且與邊AB交于點(diǎn)N,連接MN

(1)當(dāng)點(diǎn)M是邊BC的中點(diǎn)時(shí),求反比例函數(shù)的表達(dá)式;

(2)在點(diǎn)M的運(yùn)動過程中,試證明:是一個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn),連接DE、OE.

(1)求證:DE是⊙O的切線;

(2)填空:

①當(dāng)∠CAB= 時(shí),四邊形AOED是平行四邊形;

②連接OD,在①的條件下探索四邊形OBED的形狀為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABD中,BCAD邊上的高線,tanBAD1,在BC上截取CGCD,連結(jié)AG,將△ACG繞點(diǎn)C旋轉(zhuǎn),使點(diǎn)G落在BD邊上的F處,A落在E處,連結(jié)BE,若AD4,tanD3,則△CFD和△ECF的面積比為___;BE長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DFBD

1)求證:△AEB≌△CFD;

2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC45°,ADBC于點(diǎn)D,若BD3,CD2.則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧的中點(diǎn),⊙O的切線BD交AC的延長線于點(diǎn)D,E是OB的中點(diǎn),CE的延長線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.

⑴求證:AC=CD.

⑵若OB=2,求BH的長.

查看答案和解析>>

同步練習(xí)冊答案