【題目】如圖,BD是四邊形ABCD的對(duì)角線(xiàn),ABBC6,∠ABC60°,點(diǎn)G1、G2分別是△ABD和△DBC的重心,則點(diǎn)G1、G2間的距離為_____

【答案】2

【解析】

BD的中點(diǎn)G,連接AGCG,AC,根據(jù)點(diǎn)G1、G2分別是ABDDBC的重心,得到G1AG上,G2CG上,求得,根據(jù)相似三角形的性質(zhì)得到,根據(jù)已知條件得到ABC是等邊三角形,求得AC6,于是得到結(jié)論.

解:取BD的中點(diǎn)G,連接AG,CGAC,

∵點(diǎn)G1、G2分別是ABDDBC的重心,

G1AG上,G2CG上,

,

∵∠AGC=∠AGC

∴△GG1G2∽△GAC,

,

ABBC6,∠ABC60°,

∴△ABC是等邊三角形,

AC6,

G1G22,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y2x+6與反比例函數(shù)的圖象交于點(diǎn)A1,m),與x軸交于點(diǎn)B,平行于x軸的直線(xiàn)yn0n6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM

1)求m的值和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出當(dāng)x0時(shí),不等式2x+6-0的解集;

3)當(dāng)n為何值時(shí),BMN的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點(diǎn)B1y軸上,頂點(diǎn)C1,E1,E2,C2,E3E4,C3…在x軸上.已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O60°,B1C1B2C2B3C3,則正方形A2019B2019C2019D2019的邊長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小強(qiáng)從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時(shí)需把方向調(diào)整到與出發(fā)時(shí)一致,則方向的調(diào)整應(yīng)是( 。

A. 左轉(zhuǎn) 80° B. 右轉(zhuǎn)80° C. 右轉(zhuǎn) 100° D. 左轉(zhuǎn) 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線(xiàn)ACPC交⊙O于另一點(diǎn)D,連接PA、PB

(1)求證:AP平分∠CAB;

(2)P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則

①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,P,C為頂點(diǎn)的四邊形是正方形;

②當(dāng)的長(zhǎng)度是______時(shí),以A,D,O,P為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+cx軸交于A(﹣1,0)和B3,0),與y軸交于C點(diǎn),點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)D.拋物線(xiàn)頂點(diǎn)為H

1)求拋物線(xiàn)的解析式.

2)當(dāng)點(diǎn)E在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),在直線(xiàn)AD上是否存在點(diǎn)F,使得以點(diǎn)A、C、EF為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)點(diǎn)P為直線(xiàn)AD上方拋物線(xiàn)的對(duì)稱(chēng)軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)SPAD3,若在x軸上存在以動(dòng)點(diǎn)Q,使PQ+QB最小,若存在,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC內(nèi)接于⊙OAB是⊙O的直徑,點(diǎn)D在⊙O上,過(guò)點(diǎn)C的切線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,且AECE,連接CD

1)求證:DC=BC;

2)若AB=5,AC=4,求tanDCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtOAB中,∠AOB90°,OAOB4,以點(diǎn)O為圓心、2為半徑畫(huà)圓,點(diǎn)C是⊙O上任意一點(diǎn),連接BC,OC.將OC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,交⊙O于點(diǎn)D,連接AD

1)當(dāng)AD與⊙O相切時(shí),

①求證:BC是⊙O的切線(xiàn);

②求點(diǎn)COB的距離.

2)連接BD,CD,當(dāng)BCD的面積最大時(shí),點(diǎn)BCD的距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bxa0)過(guò)點(diǎn)E8,0),矩形ABCD的邊AB在線(xiàn)段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線(xiàn)上,∠BAD的平分線(xiàn)AMBC于點(diǎn)M,點(diǎn)NCD的中點(diǎn),已知OA2,且OAAD13.

1)求拋物線(xiàn)的解析式;

2F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;

3)在x軸下方且在拋物線(xiàn)上是否存在點(diǎn)P,使△ODPOD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

4)矩形ABCD不動(dòng),將拋物線(xiàn)向右平移,當(dāng)平移后的拋物線(xiàn)與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線(xiàn)KL平分矩形的面積時(shí),求拋物線(xiàn)平移的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案