如圖1,圓O1與圓O2都經(jīng)過A、B兩點,經(jīng)過點A的直線CD與圓O1交于點C,與圓O2交于點D.經(jīng)過點B的直線EF與圓O1交于點E,與圓O2交于點F.

(1)求證:CEDF;
(2)在圖1中,若CD和EF可以分別繞點A和點B轉(zhuǎn)動,當點C與點E重合時(如圖2),過點E作直線MNDF,試判斷直線MN與圓O1的位置關(guān)系,并證明你的結(jié)論.
(1)證明:連接AB;
∵四邊形ABEC是⊙O1的內(nèi)接四邊形,
∴∠BAD=∠E.
又∵四邊形ADFB是⊙O2的內(nèi)接四邊形,
∴∠BAD+∠F=180°.
∴∠E+∠F=180°.
∴CEDF.

(2)MN與⊙O1相切,
過E作⊙O1的直徑EH,連接AH和AB;
∵MNDF,
∴∠MEA=∠D.
又∵∠D=∠ABE,∠ABE=∠AHE,
∴∠MEA=∠AHE.
∵EH為⊙O1的直徑,
∴∠EAH=90°.
∴∠AHE+∠AEH=90°.
∴∠MEA+∠AEH=90°.
又∵EH為⊙O1的直徑,
∴MN為⊙O1的切線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過AB的中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O的切線;
(2)若△ABO腰上的高等于底邊的一半,且AB=4
3
,求
ECF
的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線AB是⊙O的切線,A為切點,OB交⊙O于點C,點D在⊙O上,且∠OBA=40°,則∠ADC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標系內(nèi),以A(3,-2)為圓心,2為半徑畫圓,以⊙A與x軸的位置關(guān)系是______,⊙A與y軸的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為7和3,圓心距為4,那么這兩個圓( 。
A.內(nèi)切B.外切C.相交D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是一個組合煙花的橫截面,其中16個圓的半徑相同,點A、B、C、D分別是四個角上的圓的圓心,且四邊形ABCD為正方形.若圓的半徑為r,組合煙花的高為h,則組合煙花側(cè)面包裝紙的面積至少需要(接縫面積不計)( 。
A.26πrhB.24rh+πrhC.12rh+2πrhD.24rh+2πrh

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為7cm和8cm,圓心距為1cm,則兩圓的位置關(guān)系是(  )
A.相離B.相交C.內(nèi)切D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(教材變式題)將8個半徑為2的圓,如圖所示按兩種方案畫出來,請計算出這兩種方案所圍成的8個圓的長方形的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知⊙O1與⊙O2外切于點C,AB為兩圓外公切線,切點為A,B,若⊙O1的半徑為1,⊙O2的半徑為3,則圖中陰影部分的面積是( 。
A.4
3
-
5
6
π
B.4
3
-
11
6
π
C.8
3
-
11
6
π
D.8
3
-
5
3
π

查看答案和解析>>

同步練習(xí)冊答案