【題目】如果等腰三角形的一邊長(zhǎng)為8,另一邊長(zhǎng)為10,那么連結(jié)這個(gè)三角形各邊的中點(diǎn)所成的三角形的周長(zhǎng)為 _______.

【答案】1314

【解析】

作圖分析,根據(jù)中位線定理得出△DEF的周長(zhǎng)等于△ABC的周長(zhǎng)的一半,再分兩種情況討論,從而求得其周長(zhǎng).

解:如圖,△ABC中,AB=AC=8cmBC=10cmD、E、F分別是邊AB、BC、AC的中點(diǎn).


DEF的周長(zhǎng).
①∵AB=AC=8,BC=10,D、EF分別是邊AB、BC、AC的中點(diǎn),
DE=BCDF=AC,EF=AB,
∴△DEF的周長(zhǎng)=DE+DF+EF=8+8+10=13,

②∵AB=AC=10BC=8,DE、F分別是邊ABBC、AC的中點(diǎn),
DE=BC,DF=ACEF=AB
∴△DEF的周長(zhǎng)=DE+DF+EF=8+10+10=14,
故答案為:1314

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2ODOE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AGDE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD

1)求該拋物線的表達(dá)式;

2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t

①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求的面積的最大值;

②該拋物線上是否存在點(diǎn)P,使得若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到ABC,連接AM,BM,BMAC于點(diǎn)O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到ABCA′C′D,如圖1所示.A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.

觀察圖2可知:與BC相等的線段是 ,CAC′=°

問(wèn)題探究:如圖3ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向ABC外作等腰RtABE和等腰RtACF,過(guò)點(diǎn)EF作射線GA的垂線,垂足分別為PQ. 試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4ABC中,AGBC于點(diǎn)G,分別以AB、AC為一邊向ABC外作矩形ABME和矩形ACNF,射線GAEF于點(diǎn)H. AB=k AE,AC=k AF,試探究HEHF之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段ACn+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作菱形ABMN與菱形BCEF,點(diǎn)FBM邊上,ABn,∠ABM60°,連接AM、MEEA得到△AME.當(dāng)AB1時(shí),△AME的面積記為S1;當(dāng)AB2時(shí),△AME的面積記為S2;當(dāng)AB3時(shí),△AME的面積記為S3;…;當(dāng)ABn時(shí),△AME的面積記為Sn,當(dāng)n2時(shí),SnSn1__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)A和線段BC,給出如下定義:若ABC是等腰直角三角形,則稱點(diǎn)ABC等直點(diǎn);特別的,若ABC是以BC為斜邊的等腰直角三角形,則稱點(diǎn)ABC完美等直點(diǎn)

1)若B(﹣2,0),C20),則在D0,2),E4,4),F(﹣2,﹣4),G0,)中,線段BC等直點(diǎn)   ;

2)已知B0,﹣6),C8,0).

①若雙曲線y上存在點(diǎn)A,使得點(diǎn)ABC完美等直點(diǎn),求k的值;

②在直線yx+6上是否存在點(diǎn)P,使得點(diǎn)PBC等直點(diǎn)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)若B02),C20),⊙T的半徑為3,圓心為Tt,0).當(dāng)在⊙T內(nèi)部,恰有三個(gè)點(diǎn)是線段BC等直點(diǎn)時(shí),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由10個(gè)完全相同的正三角形構(gòu)成的網(wǎng)格圖中, 如圖所示,則=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案