【題目】(8分)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
【答案】(1)∠1=52°;(2)證明見解析.
【解析】
試題(1)圖形的折疊中隱含著角和線段的相等,由題, 將一張矩形紙條ABCD按如圖所示沿EF折疊,∠FEC=64o, ∠FEC′=64o,即∠BEC′=180o-∠FEC-∠FEC′= 52o,因?yàn)?/span>AD∥BC,所以∠1=∠AGC′=∠BEC′=52o;
(2)只要找到兩個(gè)底角相等即可,因?yàn)?/span>∠FEC=64o,AD∥BC,所以∠GFE=∠FEC=64o,又因?yàn)?/span>∠FEC′=64o,所以GF=GE, 即△EFG是等腰三角形.
試題解析:(1)如圖:∵∠FEC=64o,據(jù)題意可得:∠FEC′=64o,
∴∠BEC′=180o-∠FEC-∠FEC′= 52o,
又∵AD∥BC,
∴∠1="∠AGC′=" ∠BEC′=52o.
(2)證明:∵∠FEC=64o,AD∥BC,
∴∠GFE=∠FEC=64o,
又∵∠FEC′=64o,
∴∠FEG=∠GEF=64o,
∴GF=GE,即△EFG是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是5的相反數(shù),c=|2|,且a、b、c分別是點(diǎn)A. B.C在數(shù)軸上對(duì)應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標(biāo)出點(diǎn)A. B. C.
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長度,點(diǎn)Q的速度是每秒1個(gè)單位長度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q可以追上點(diǎn)P?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A. B.C三點(diǎn)的距離之和等于12,請(qǐng)直接寫出所有點(diǎn)M對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,則折痕CE的長為( )
A.2
B.
C.
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請(qǐng)求出其大。蝗糇兓,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論:
①2a﹣b=0;
②abc>0;
③4ac﹣b2<0;
④9a+3b+c<0;
⑤關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個(gè)相等實(shí)數(shù)根;
⑥8a+c<0.
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1的最高點(diǎn)為P(3,4),且經(jīng)過點(diǎn)A(0,1),將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到拋物線l2 , 求l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是延長FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是__________________;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以50海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以60海里/小時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時(shí)兩艦艇之間的距離.
能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=5,CN=12,則MN的長為_________.(直接寫出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com