如圖,四邊形OABC的頂點A(0,4),B(-2,4),C(-4,0).過作B、C直線l,將直線l平移,平移后的直線l與x軸交于D,與y軸交于點E.
探究:當(dāng)直線l向左或向右平移時(包括直線l與BC直線重合),在直線AB上是否存在P,使△PDE為等腰三角形?若存在,請求出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.
分析:要解答本題,需要分情況討論,當(dāng)D、E、P分別為直角頂點時,根據(jù)等腰直角三角形的性質(zhì),利用三角形全等的性質(zhì)可以求出P點的坐標(biāo),從而等我出結(jié)論.
解答:解:由A(0,4),B(-2,4)、C(-4,0)得:OA=4,OC=4,
直線BC:y=2x+8,
又∵BC∥DE,
∴設(shè)直線DE的解析式是:y=2x+b,
∴D(-
b
2
,0),E(0,b).
∴OD=
1
2
b,OE=b.
①如圖1、2,以點D為直角頂點,作PP1⊥x軸,
在Rt△ODE中,OE=2OD,
可證Rt△ODE≌Rt△P1PD,
∴OD=PP1=4,DP1=OE=8.
∴OP1=12,
∴P(-12,4),P(-4,4).




②以點E為直角頂點,如圖3,
∴△AEP≌△ODE,
∴AE=OD,OE=AP,
∴AE=
1
2
OE,
∴OE=2OA=8,
∴AP=8,
∴P(8,4),
如圖4,可以得出△PAE≌△EOD,
∴AE=DO,PA=OE.
∴OE=2AE,
∵AE+OE=4,
∴AE=
4
3
,OE=
8
3
,
∴PA=
8
3
,
∴P(-
8
3
,4).
以E為直角頂點,E在O點的下方不存在.


③以P為直角頂點,如圖5,作PF⊥x軸于F,
∴易得△PAE≌△PFD,
∴PA=PF=4,
∴P(-4,4);

如圖6,作DH⊥AB于H,易得出:
△PHD≌△EAP,
∴HD=AP,AE=HP,
∴AE=8,AP=4,
∴P(4,4).
綜上所述,P點坐標(biāo)為:
P1(-12,4),P2(-4,4),P3(8,4),P4(-
8
3
,4),P5(4,4).

點評:本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,待定系數(shù)法求一次函數(shù)的解析式的運用,解答本題的關(guān)鍵是根據(jù)題意畫出不同的輔助圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的正方形紙片.點O與坐標(biāo)原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標(biāo)為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標(biāo);
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當(dāng)點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標(biāo);
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標(biāo),若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標(biāo)為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x
;
(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標(biāo)為(S-5,4)
(4)若點P在線段BC上時,P點的坐標(biāo)為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案