精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,直線y=-x+3與x軸、y軸分別交于點(diǎn)B、C;拋物線y=-x2+bx+c經(jīng)過B、C兩點(diǎn),并與x軸交于另一點(diǎn)A.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)是(1)所得拋物線上的一個動點(diǎn),過點(diǎn)P作直線l⊥x軸于點(diǎn)M,交直線BC于點(diǎn)N.
①若點(diǎn)P在第一象限內(nèi).試問:線段PN的長度是否存在最大值?若存在,求出它的最大值及此時x的值;若不存在,請說明理由;
②求以BC為底邊的等腰△BPC的面積.
分析:(1)利用一次函數(shù)與坐標(biāo)軸坐標(biāo)求法,得出B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式.
(2)利用二次函數(shù)最值求法不難求出,再利用三角形面積之間的關(guān)系,可求出等腰△BPC的面積
解答:精英家教網(wǎng)解:(1)由于直線y=-x+3經(jīng)過B、C兩點(diǎn),
令y=0得x=3;令x=0,得y=3,
∴B(3,0),C(0,3),
∵點(diǎn)B、C在拋物線y=-x2+bx+c上,于是得
-9+3b+c=0
c=3
,
解得b=2,c=3,
∴所求函數(shù)關(guān)系式為y=-x2+2x+3;

(2)①∵點(diǎn)P(x,y)在拋物線y=-x2+2x+3上,
且PN⊥x軸,
∴設(shè)點(diǎn)P的坐標(biāo)為(x,-x2+2x+3),
同理可設(shè)點(diǎn)N的坐標(biāo)為(x,-x+3),
又點(diǎn)P在第一象限,
∴PN=PM-NM,
=(-x2+2x+3)-(-x+3),
=-x2+3x,
=-(x-
3
2
)2+
9
4
,
∴當(dāng)x=
3
2
時,
線段PN的長度的最大值為
9
4

②解:
由題意知,點(diǎn)P在線段BC的垂直平分線上,精英家教網(wǎng)
又由①知,OB=OC,
∴BC的中垂線同時也是∠BOC的平分線,
∴設(shè)點(diǎn)P的坐標(biāo)為(a,a),
又點(diǎn)P在拋物線y=-x2+2x+3上,于是有a=-a2+2a+3,
∴a2-a-3=0,
解得a1=
1+
13
2
,a2=
1-
13
2
,(10分)
∴點(diǎn)P的坐標(biāo)為:(
1+
13
2
,
1+
13
2
)
(
1-
13
2
,
1-
13
2
)
,
若點(diǎn)P的坐標(biāo)為(
1+
13
2
1+
13
2
)
,此時點(diǎn)P在第一象限,
在Rt△OMP和Rt△BOC中,MP=OM=
1+
13
2

OB=OC=3,
S△BPC=S四邊形BOCP-S△BOC=2S△BOP-S△BOC=
1
2
•BO•PM-
1
2
BO•CO

=
1
2
×3×
1+
13
2
-
9
2
,
=
3
13
-6
2
,
若點(diǎn)P的坐標(biāo)為(
1-
13
2
,
1-
13
2
)
,此時點(diǎn)P在第三象限,
則S△BPC=S△BOP+S△COP+S△BOC=
1
2
×3×|
1-
13
2
|×2+
1
2
×3×3
,
=
1
2
×3×
13
-1
2
×2+
9
2
=
3
13
-3+9
2
=
3
13
+6
2
點(diǎn)評:此題主要考查了待定系數(shù)法求二次函數(shù)解析式,線段垂直平分線的性質(zhì),二次函數(shù)最值問題,綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案