如圖,已知直線與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)求△AOB的面積;
(2)求點(diǎn)C坐標(biāo);
(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)P(x,0)
①請(qǐng)用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請(qǐng)說明理由;
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo).
(1)6;(2)(7,4);(3)①,;②存在這樣的P點(diǎn),P(3,0).
【解析】
試題分析:(1)先由直線求出A、B兩點(diǎn)的橫坐標(biāo),即OA、OB的長(zhǎng),從而可求出△AOB的面積;
(2)過C點(diǎn)作CD⊥x軸,垂足為D,構(gòu)造Rt△ADC.易證△OAB≌△DCA,從而可求出CD=4,OD=7,所以C點(diǎn)坐標(biāo)為(7,4);
(3)①由(2)可知,PD=7-x,在Rt△OPB中,,Rt△PCD中,
②存在這樣的P點(diǎn).P(3,0).
試題解析:(1)由直線,令y=0,得OA=x=4,令x=0,得OB=y=3,∴S△AOB=×4×3=6;
(2)過C點(diǎn)作CD⊥x軸,垂足為D,
∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
又∵AB=AC,∠AOB=∠CDA=90°,
∴△OAB≌△DCA,
∴CD=OA=4,AD=OB=3,則OD=4+3=7,
∴C(7,4);
(3)①由(2)可知,PD=7-x,
在Rt△OPB中,PB2=OP2+OB2=x2+9,
Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,
②存在這樣的P點(diǎn).
設(shè)B點(diǎn)關(guān)于 x軸對(duì)稱的點(diǎn)為B′,則B′(0,-3),
連接CB′,設(shè)直線B′C解析式為y=kx+b,將B′、C兩點(diǎn)坐標(biāo)代入,得
解得
所以,直線B′C解析式為y=x-3,
令y=0,得P(3,0),此時(shí)|PC-PB|的值最大,
考點(diǎn):一次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖北咸寧卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△COD.
(1)點(diǎn)C的坐標(biāo)是 ,線段AD的長(zhǎng)等于 ;
(2)點(diǎn)M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點(diǎn)G,M,求拋物線的解析式;
(3)如果點(diǎn)E在y軸上,且位于點(diǎn)C的下方,點(diǎn)F在直線AC上,那么在(2)中的拋物線上是否存在點(diǎn)P,使得以C,E,F(xiàn),P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出該菱形的周長(zhǎng)l;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com