【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿折線BA→AC運(yùn)動到點(diǎn)C,同時(shí)動點(diǎn)Q從點(diǎn)A出發(fā),以相同速度沿折線AC→CD運(yùn)動到點(diǎn)D,當(dāng)一個(gè)點(diǎn)停止運(yùn)動時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)△APQ的面積為y,運(yùn)動時(shí)間為x秒,則下列圖象能大致反映y與x之間函數(shù)關(guān)系的是( 。
A. B.
C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x+4與x軸交于A點(diǎn),與y軸交于B點(diǎn),動點(diǎn)P從A點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿AO方向向點(diǎn)O勻速運(yùn)動,點(diǎn)E是點(diǎn)B以Q為對稱中心的對稱點(diǎn),同時(shí)動點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BA方向向點(diǎn)A勻速運(yùn)動,當(dāng)一個(gè)點(diǎn)停止運(yùn)動,另一個(gè)點(diǎn)也隨之停止運(yùn)動,連結(jié)PQ,設(shè)P,Q兩點(diǎn)運(yùn)動時(shí)間為t秒(0<t≤2).
(1)直接寫出A,B兩點(diǎn)的坐標(biāo).
(2)當(dāng)t為何值時(shí),PQ∥OB?
(3)四邊形PQBO面積能否是△ABO面積的;若能,求出此時(shí)t的值;若不能,請說明理由;
(4)當(dāng)t為何值時(shí),△APE為直角三角形?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x>0時(shí),的解集.
(3)點(diǎn)P是x軸上的一動點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是矩形,AB=2,BC=4,E為BC邊上一動點(diǎn)且不與B、C重合,連接AE;
(1)如圖1,過點(diǎn)E作EN⊥AE交CD于點(diǎn)N
①若BE=1,求CN的長;②將△ECN沿EN翻折,點(diǎn)C恰好落在邊AD上,求BE的長;
(2)如圖2,連接BD,設(shè)BE=m,試用含m的代數(shù)式表示S四邊形CDFE:S△ADF值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,D是BC邊上一點(diǎn),連接AD,分別以CD和AD為直角邊作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,點(diǎn)E,F在BC下方,連接EF.
(1)如圖1,當(dāng)BC=AC,CE=CD,DF=AD時(shí),
求證:①∠CAD=∠CDF,
②BD=EF;
(2)如圖2,當(dāng)BC=2AC,CE=2CD,DF=2AD時(shí),猜想BD和EF之間的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、E、F,得△DEF,則下列說法正確的個(gè)數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D是△ABC內(nèi)一點(diǎn),連接AD,BD.在BD左側(cè)作Rt△BDE,使∠BDE=90°,以AD和DE為鄰邊作ADEF,連接CD,DF.
(1)若AC=BC,BD=DE.
①如圖1,當(dāng)B,D,F三點(diǎn)共線時(shí),CD與DF之間的數(shù)量關(guān)系為 .
②如圖2,當(dāng)B,D,F三點(diǎn)不共線時(shí),①中的結(jié)論是否仍然成立?請說明理由.
(2)若BC=2AC,BD=2DE,,且E,C,F三點(diǎn)共線,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大。
(2)說明線段AC、CD、BD之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com