如圖,在等邊△ABC中,∠BAD=20°,AE=AD,則∠CDE的度數(shù)是


  1. A.
    10°
  2. B.
    12.5°
  3. C.
    15°
  4. D.
    20°
A
分析:先求出∠DAE,根據(jù)等腰三角形性質(zhì)求出∠ADE=∠AED,可求出∠ADE,再根據(jù)三角形的外角性質(zhì)求出∠ADC,即可求出答案.
解答:∵△ABC是等邊三角形,
∴∠B=∠BAC=60°,
∵∠BAD=20°,
∴∠DAE=∠BAC-∠BAD=40°,
∵AD=AE,
∴∠ADE=∠AED,
∵∠ADE+∠AED+∠DAE=180°,
∴∠ADE=∠AED=×(180°-40°)=70°,
∵∠ADC=∠B+∠BAD=60°+20°=80°,
∴∠CDE=∠CDA-∠ADE=80°-70°=10°.
故選A.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),等腰三角形的性質(zhì)和判定,三角形的外角性質(zhì),三角形的內(nèi)角和定理等知識(shí)點(diǎn)的綜合運(yùn)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案