精英家教網 > 初中數學 > 題目詳情

【題目】下列說法正確的是( 。

A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上

B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的

C.“367人中至少有2人生日相同是必然事件

D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是

【答案】C

【解析】

利用隨機事件和必然事件的定義對A、C進行判斷;利用比較兩事件的概率的大小判斷游戲的公平性對B進行判斷;利用中心對稱的性質和概率公式對D進行判斷.

A、任意擲一枚質地均勻的硬幣10次,可能有5次正面向上,所以A選項錯誤;

B、通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是公平的,所以B選項錯誤;

C“367人中至少有2人生日相同是必然事件,所以C選項正確;

D、四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是,所以D選項錯誤.

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中xOy中,已知點A的坐標是(0,1),以OA為邊在右側作等邊三角形OAA1,過點A1x軸的垂線,垂足為點O1,以O1A1為邊在右側作等邊三角形O1A1A2,再過點A2x軸的垂線,垂足為點O2,以O2A2為邊在右側作等邊三角形O2A2A3,,按此規(guī)律繼續(xù)作下去,得到等邊三角形O2018A2018A2019,則點A2019的縱坐標為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小劉同學在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點O距離地面的高OO′=2米.當吊臂頂端由A點抬升至A′點(吊臂長度不變)時,地面B處的重物(大小忽略不計)被吊至B′處,緊繃著的吊纜A′B′=ABAB垂直地面O′B于點B,A′B′垂直地面O′B于點C,吊臂長度OA′=OA=10米,且cosA=sinA′=

(1)求此重物在水平方向移動的距離BC;

(2)求此重物在豎直方向移動的距離B′C.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形中,邊上的一點,,,將正方形邊沿折疊到,延長.連接,現在有如下四個結論:①;②;③;④; 其中結論正確的個數是(

A.1B.2

C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了增強學生的安全意識,某校組織了一次全校2500名學生都參加的安全知識考試.閱卷后,學校團委隨機抽取了100份考卷進行分析統(tǒng)計,發(fā)現考試成績(x分)的最低分為51分,最高分為滿分100分,并繪制了如下尚不完整的統(tǒng)計圖表.請根據圖表提供的信息,解答下列問題:

1)填空:a=______,b=______,n=______;

2)將頻數分布直方圖補充完整;

3)該校對考試成績?yōu)?/span>91≤x≤100的學生進行獎勵,按成績從高分到低分設一、二、三等獎,并且一、二、三等獎的人數比例為136,請你估算全校獲得二等獎的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《九章算術》是中國古代第一部數學專著,是《算經十書》中最重要的一種,成于公元一世紀左右.在其勾股章中有這樣一個問題:今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?意思是說:如圖,矩形城池ABCD,東邊城墻AB9里,南邊城墻AD7里,東門點E,南門點F分別是AB,AD的中點,EGAB,FHADEG15里,HG經過點A,則FH等于多少里?請你根據上述題意,求出FH的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,EF分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中(如圖),已知二次函數(其中a、b、c是常數,且a0)的圖像經過點A0,-3)、B1,0)、C3,0),聯結AB、AC

1)求這個二次函數的解析式;

2)點D是線段AC上的一點,聯結BD,如果,求tan∠DBC的值;

3)如果點E在該二次函數圖像的對稱軸上,當AC平分∠BAE時,求點E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果點D、E,F分別在△ABC的邊AB、BC,AC上,聯結DE、EF,且DEAC,那么下列說法錯誤的是( 。

A.如果EFAB,那么AFACBDAB

B.如果ADABCFAC,那么EFAB

C.如果△EFC∽△ABC,那么 EFAB

D.如果EFAB,那么△EFC∽△BDE

查看答案和解析>>

同步練習冊答案