已知:∠AOB=60°,OD、OE分別是∠BOC和∠COA的平分線(xiàn).
(1)如圖1,OC在∠AOB內(nèi)部時(shí),求∠DOE的度數(shù);
(2)如圖2,將OC繞O點(diǎn)旋轉(zhuǎn)到OB的左側(cè)時(shí),OD、OE仍是∠BOC和∠COA的平分線(xiàn),求此時(shí)∠DOE的度數(shù);
(3)當(dāng)OC繞O點(diǎn)旋轉(zhuǎn)到OA的下方時(shí),OD、OE分別是∠BOC和∠COA的平分線(xiàn),∠DOE的度數(shù)又是多少?(直接寫(xiě)出結(jié)論,不必寫(xiě)出解題過(guò)程)
精英家教網(wǎng)
分析:(1)利用角平分線(xiàn)定義,求證∠DOE=
1
2
∠BOC+
1
2
∠AOC,然后根據(jù)∠AOB=60°即可求出∠DOE的度數(shù);
(2)利用角平分線(xiàn)定義,求證∠DOE=
1
2
∠AOC-
1
2
∠BOC,然后根據(jù)∠AOB=60°即可求出∠DOE的度數(shù);
(3)解題思路同(2).
解答:解:(1)∵OD、OE分別是∠BOC和∠COA的平分線(xiàn),
∴∠COD=
1
2
∠BOC,∠COE=
1
2
∠AOC,
∴∠DOE=∠COD+∠COE=
1
2
∠BOC+
1
2
∠AOC=
1
2
∠AOB=30°;

(2)∵OD、OE分別是∠BOC和∠COA的平分線(xiàn),
∴∠COD=
1
2
∠BOC,∠COE=
1
2
∠AOC,
又∠AOB=60°,
∴∠DOE=∠COE-∠COD=
1
2
∠AOC-
1
2
∠BOC=
1
2
∠AOB=30°.

(3)∠DOE的度數(shù)仍然是30°.
答:(1)OC在∠AOB內(nèi)部時(shí),∠DOE為30°;
(2)將OC繞O點(diǎn)旋轉(zhuǎn)到OB的左側(cè)時(shí),OD、OE仍是∠BOC和∠COA的平分線(xiàn),此時(shí)∠DOE為30°;
(3)當(dāng)OC繞O點(diǎn)旋轉(zhuǎn)到OA的下方時(shí),OD、OE分別是∠BOC和∠COA的平分線(xiàn),∠DOE的度數(shù)仍是30°.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)角的計(jì)算和角平分線(xiàn)定義的理解和掌握,對(duì)于學(xué)生來(lái)說(shuō)此題有一定的拔高難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知∠AOM與∠MOB互為余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)如果已知中∠AOB=80°,其他條件不變,求∠MON的度數(shù);
(3)如果已知中∠BOC=60°,其他條件不變,求∠MON的度數(shù);
(4)從(1)、(2)、(3)中你能看出有什么規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:∠AOB=170°,∠AOC=70°,∠BOD=60°,求∠COD的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.連接AD、BC,點(diǎn)M、N、P分別為OA、OD、BC的中點(diǎn).
(1)如圖1,若A、O、C三點(diǎn)在同一直線(xiàn)上,且∠ABO=60°,則△PMN的形狀是
 
,此時(shí)
AD
BC
=
 

(2)如圖2,若A、O、C三點(diǎn)在同一直線(xiàn)上,且∠ABO=2α,證明△PMN∽△BAO,并計(jì)算
AD
BC
的值(用含α的式子表示);
(3)在圖2中,固定△AOB,將△COD繞點(diǎn)O旋轉(zhuǎn),直接寫(xiě)出PM的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:∠AOB=60°,OD、OE分別是∠BOC和∠COA的平分線(xiàn).
(1)如圖1,OC在∠AOB內(nèi)部時(shí),求∠DOE的度數(shù);
(2)如圖2,將OC繞O點(diǎn)旋轉(zhuǎn)到OB的左側(cè)時(shí),OD、OE仍是∠BOC和∠COA的平分線(xiàn),求此時(shí)∠DOE的度數(shù);
(3)當(dāng)OC繞O點(diǎn)旋轉(zhuǎn)到OA的下方時(shí),OD、OE分別是∠BOC和∠COA的平分線(xiàn),∠DOE的度數(shù)又是多少?(直接寫(xiě)出結(jié)論,不必寫(xiě)出解題過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案