【題目】在《朗讀者》節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學(xué)生的讀書情況,隨機調(diào)查了八年級50名學(xué)生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是 ( )
A. 中位數(shù)是2 B. 眾數(shù)是17 C. 平均數(shù)是3 D. 方差是2
【答案】A
【解析】
根據(jù)中位數(shù)、眾數(shù)、平均數(shù)、方差的定義和計算方法逐一進行判斷即可.
∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的數(shù)都是2,
∴這組數(shù)據(jù)的中位數(shù)為2,故A選項正確;
∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是3,故B選項錯誤;
觀察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為(0×3+1×13+2×16+3×17+4×1)÷50=2,故C選項錯誤;
方差為:×[3×(0-2)2+13×(1-2)2+16×(2-2)2+17×(3-2)2+1×(4-2)2]=,故D選項錯誤;
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知2a-1的平方根是±3,3a-b+2的算術(shù)平方根是4,求a+3b的立方根.
(2)已知a,b ,c滿足,求a,b c的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格調(diào)查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設(shè)和諧家園,準備將一塊周長為76米的長方形空地,設(shè)計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經(jīng)市場預(yù)測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預(yù)計花費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當(dāng)a=5時,方程組的解是;
②當(dāng)x,y的值互為相反數(shù)時,a=20;
③不存在一個實數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,若,將點在內(nèi)部,∠,∠,∠滿足的數(shù)量關(guān)系是 ,并說明理由.
(2)在如圖1中,將直線繞點逆時針方向旋轉(zhuǎn)一定角度交直線于點,如圖2,利用(1)中的結(jié)論(可以直接套用),求∠﹑∠﹑∠﹑∠之間有何數(shù)量關(guān)系?
(3)科技活動課上,雨軒同學(xué)制作了一個圖(3)的“飛旋鏢”,經(jīng)測量發(fā)現(xiàn)∠=°,∠=°,則∠與∠的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標(biāo)分別是A (3,2)、B(1,3)!鰽OB繞點O 逆時針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出旋轉(zhuǎn)后的圖形;
(2)求線段OB在旋轉(zhuǎn)過程中所掃過的圖形面積(寫過程)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD,使點D落在邊BC上的點F處,折痕為AE.已知AB=6cm,BC=10cm.則EC的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,﹣1),B(﹣1,1),C(0,﹣2).
(1)寫出點B關(guān)于坐標(biāo)原點O對稱的點B1的坐標(biāo);
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點B1的正比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com