【題目】已知:如圖所示,的直徑,上一點(diǎn),平分,過

(1)求證:相切;

(2),,求的長;

(3)中點(diǎn),過,若,,求的半徑.

【答案】(1)見解析; (2)(3)半徑

【解析】

1)連接OP,根據(jù)角平分線的性質(zhì)及圓的半徑相等的性質(zhì)得到,推出OPAN,根據(jù)即可得到OPPA,由此得到結(jié)論;

2)連接,根據(jù)勾股定理求出BM=16得到ME=8,再利用勾股定理求出OE=6,得到PE=4,即可利用勾股定理求出MP;

3)連接,設(shè)的交點(diǎn)為,根據(jù)設(shè),可求,根據(jù)角平分線的性質(zhì)及圓的半徑相等的性質(zhì)得到,推出PC=FC,根據(jù)求出x=2,即可得到半徑OP.

(1)證明:連接.

平分

,

,

,

,

,

相切;

(2)解:連接,

MN是直徑,

∴BM⊥BN,

OPBM,

.

,

,

;

(3)解:連接,設(shè)的交點(diǎn)為.

,

∴可設(shè)

.

,

,

,

,

,

,

.

∴半徑

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,取EF的中點(diǎn)G,連接CG、BG、DG,下列結(jié)論中錯(cuò)誤的是(

A.BCDFB.DCG≌△BGCC.DFG≌△BCGD.ACBG1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線在第一象限上的一動點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動,點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動,則這個(gè)函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4y軸交于點(diǎn)A,與x軸交于點(diǎn)B,直線y=kx+b經(jīng)過點(diǎn)A,且交x軸與點(diǎn)C(3,0)

1)求直線AC的函數(shù)表達(dá)式;

2)動點(diǎn)P在線段CB上由CB勻速運(yùn)動,到達(dá)點(diǎn)B后停止運(yùn)動,運(yùn)動速度為3個(gè)單位長度,過點(diǎn)PPEx軸,交直線AC于點(diǎn)E,過點(diǎn)E作直線GEx軸交軸于點(diǎn)F,交直線AB于點(diǎn)G,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(t0)秒.

①直接寫出線段PE的長度(用含t的代數(shù)式表示)

②當(dāng)EG=1時(shí),請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)、是反比例函數(shù)圖象上的點(diǎn),于點(diǎn),

1)求直線的函數(shù)解析式及反比例函數(shù)的解析式;

2)若、、的面積分別為,直接寫出,,的一個(gè)數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題引入:如圖1所示,正方形和正方形,則的數(shù)量關(guān)系是 , ;

(2)類比探究:如圖2所示,、的中點(diǎn),正方形和正方形中,判斷的數(shù)量關(guān)系,并求出的值.

(3)解決問題:

①若把(1)中的正方形都改成矩形,且,則(1)中的結(jié)論還成立嗎?若不能成立,請寫出的關(guān)系,并求出的值;

②若把(2)中的正方形也都改成矩形,且,請直接寫出的關(guān)系以及的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線)的頂點(diǎn)為,對稱軸與軸交于點(diǎn),當(dāng)以為對角線的正方形的另外兩個(gè)頂點(diǎn)、恰好在拋物線上時(shí),我們把這樣的拋物線稱為美麗拋物線,正方形為它的內(nèi)接正方形.

1)當(dāng)拋物線是美麗拋物線時(shí),則______;當(dāng)拋物線是美麗拋物線時(shí),則______;

2)若拋物線是美麗拋物線時(shí),則請直接寫出的數(shù)量關(guān)系;

3)若是美麗拋物線時(shí),(2,的數(shù)量關(guān)系成立嗎?為什么?

4)系列美麗拋物線為小于的正整數(shù))頂點(diǎn)在直線上,且它們中恰有兩條美麗拋物線內(nèi)接正方形面積比為.求它們二次項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CECF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9mB處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若干名工人某天生產(chǎn)同一種玩具,生產(chǎn)的玩具數(shù)整理成條形圖(如圖所示).則他們生產(chǎn)的玩具數(shù)的平均數(shù)、中位數(shù)、眾數(shù)分別為( )

A.5,5,4 B.5,5,5

C.5,4,5 D.5,4,4

查看答案和解析>>

同步練習(xí)冊答案