【題目】已知:⊙O的半徑為13cm,弦AB=24cm,弦CD=10cm,AB//CD.則這兩條平行弦AB,CD之間的距離是 ________________
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應值如下表所示:
時間第x天 | 1 | 3 | 5 | 7 | 10 | 11 | 12 | 15 |
日銷量P(千克) | 320 | 360 | 400 | 440 | 500 | 400 | 300 | 0 |
(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)從你學過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關系式及自變量x的取值范圍;
(3)在這15天中,哪一天銷售額達到最大,最大銷售額是多少元;
(4)周老師非常熱愛公益事業(yè),若在前5天,周老師決定每銷售1千克紅心獼猴桃就捐獻a元給“環(huán)保公益項目”,且希望每天的銷售額不低于2800元以維持各種開支,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點A順時針旋轉α(0°<α<180°)后與⊙O相切,則α的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x 的一元二次方程a x2 + bx + c = 0(a>0)有兩個不相等且非零的實數(shù)根,探究a,b,c滿足的條件.
小華根據(jù)學習函數(shù)的經(jīng)驗,認為可以從二次函數(shù)的角度看一元二次方程,下面是小華的探究過程:第一步:設一元二次方程ax2 +bx+c = 0(a>0)對應的二次函數(shù)為y = ax2 +bx +c(a>0);
第二步:借助二次函數(shù)圖象,可以得到相應的一元二次方程中a,b,c滿足的條件,列表如下:
方程兩根的情況 | 對應的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個 不相等的負實根 | ||
①_______ | ||
方程有兩個 不相等的正實根 | ②__________ | ③____________ |
(1)請幫助小華將上述表格補充完整;
(2)參考小華的做法,解決問題:
若關于x的一元二次方程有一個負實根和一個正實根,且負實根大于-1,求實數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為3cm,點N在AC邊上,AN=1cm.△ABC邊上的動點M從點A出發(fā),沿A→B→C運動,到達點C時停止.設點M運動的路程為xcm,MN的長為ycm.
小西根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小西的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了y與x的幾組對應值;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
y/cm | 1 | 0.87 | 1 | 1.32 | 2.18 | 2.65 | 2.29 | 1.8 | 1.73 | 1.8 | 2 |
(2)在平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,畫出該函數(shù)的圖象;
(3) 結合函數(shù)圖象,解決問題:當MN=2cm時,點M運動的路程為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊三角形ABC,O為△ABC內(nèi)一點,連接OA,OB,OC,將△BAO繞點B旋轉至△BCM.
(1)依題意補全圖形;
(2)若OA= ,OB= ,OC=1,求∠OCM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分線,CE⊥AN,垂足是E,連接DE交AC于F.
(1)求證:四邊形ADCE為矩形;
(2)求證:DF∥AB,DF=;
(3)當△ABC滿足什么條件時,四邊形ADCE為正方形,簡述你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點,拋物線經(jīng)過點,與軸另一交點為,頂點為.
(1)求拋物線的解析式;
(2)在軸上找一點,使的值最小,求的最小值;
(3)在拋物線的對稱軸上是否存在一點,使得?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com