【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD,∠A=∠ADC,E,F(xiàn)分別為AD,CD的中點,連接BE,BF,延長BE交CD的延長線于點M.
(1)求證:四邊形ABCD為矩形;
(2)若MD=6,BC=12,求BF的長度.
【答案】(1)詳見解析;(2).
【解析】
(1)先求出四邊形ABCD是平行四邊形,再根據(jù)矩形的判定得出即可;
(2)求出DM=AB=6,根據(jù)矩形的性質得出CD=AB=6,求出CF,根據(jù)勾股定理求出BF即可.
(1)證明:∵在四邊形ABCD中,AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A+∠ADC=180°,
∵∠A=∠ADC,
∴∠A=90°,
∴四邊形ABCD是矩形;
(2)解:∵AB∥CD,
∴∠ABE=∠M,
∵E為AD的中點,
∴AE=DE.
在△ABE和△DME中
,
∴△ABE≌△DME(AAS),
∴AB=DM=6,
∵四邊形ABCD是矩形,
∴DC=AB=DM=6,∠C=90°,
∵F為CD的中點,
∴CF=CD=3,
在Rt△BCF中,由勾股定理得:BF=.
科目:初中數(shù)學 來源: 題型:
【題目】在面積為15的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,
作AF垂直于直線CD于點F,若AB=5,BC=6,則CE+CF的值為( )
A.11+B.11-
C.11+或11-D.11-或1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防“甲型H1N1”,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關系式呢?
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.
(1)請用尺規(guī)作圖作出AC的垂直平分線,垂足為點D,交AB于點E(保留作圖痕跡,不要求寫作法).
(2)連接CE,如果△ABC的周長為32,DC的長為6,求△BCE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形, D、 E分別在邊AB、AC上,且AD=CE,CD與BE相交于點O.
(1)如圖①,求∠BOD的度數(shù);
(2)如圖②,如果點D、 E分別在邊AB、CA的延長線上時,且AD=CE,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某日,王艷騎自行車到位于家正東方向的演奏廳聽音樂會.王艷離家5分鐘后自行車出現(xiàn)故障而且發(fā)現(xiàn)沒有帶錢包,王艷立即打電話通知在家看報紙的爸爸騎自行車趕來送錢包(王艷打電話和爸爸準備出門的時間忽略不計),同時王艷以原來一半的速度推著自行車繼續(xù)走向演奏廳.爸爸接到電話后,立刻出發(fā)追趕王艷,追上王艷的同時,王艷坐上出租車并以爸爸速度的2倍趕往演奏廳(王艷打車和爸爸將錢包給王艷的時間忽略不計),同時爸爸立刻掉頭以原速趕到位于家正西方3900米的公司上班,最后王艷比爸爸早到達目地的.在整個過程中,王艷和爸爸保持勻速行駛.如圖是王艷與爸爸之間的距離y(米)與王艷出發(fā)時間x(分鐘)之間的函數(shù)圖象,則王艷到達演奏廳時,爸爸距離公司_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.
(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);
(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com