【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為鳳凰方程.已知鳳凰方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

【答案】B

【解析】

因為方程有兩個相等的實數(shù)根,所以根的判別式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0(-a-c)2-4ac =0,化簡即可得到ac的關(guān)系.

∵一元二次方程ax2+bx+c=0(a≠0)有兩個相等的實數(shù)根, ∴△=b2-4ac=0,

a+b+c=0,即b=-a-c, 代入b2-4ac=0得(-a-c)2-4ac=0,

即(-a-c)2-4ac=a2+2ac+c2-4ac=a2-2ac+c2=(a-c)2=0,∴a=c. 故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,.從點出發(fā),沿運動,速度為每秒2個單位長度;點從點出發(fā)向點運動,速度為每秒1個單位長度.、兩點同時出發(fā),點運動到點時,兩點同時停止運動,設(shè)點的運動時間為(秒).連結(jié)、、.

1)點到點時,____________;當(dāng)點到終點時,的長度為_________;

2)用含的代數(shù)式表示的長;

3)當(dāng)的面積為9時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點BBE⊥CD,垂足為E,連接AE,FAE上的一點,且∠BFE ∠C

1)求證:△ABF∽△EAD;

2)若AB4,∠BAE30°,求AE的長;

3)在(1)、(2)的條件下,若AD3,求BF的長(計算結(jié)果可含根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,分別與相切于點、點,的延長線于點的延長線于點

1)求證:;

2)若,,求的長;

3)在(2)的條件下,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC6,A,NAB邊上的兩點,且滿足∠MCN45°,若AM3,則MN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABCAE于點M,經(jīng)過B,M兩點的⊙OBC于點G,AB于點F,FB恰為⊙O的直徑.

1)求證:AE⊙O相切;

2)當(dāng)BC=4,cosC=時,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已 知直線交坐標軸于兩點,以線段為邊向上作正方形,過點的拋物線與直線另一個交點為

1)請直接寫出點的坐標;

2)求拋物線的解析式;

3)若正方形以每秒個單位長度的速度沿射線下滑,直至頂點落在x軸上時停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;

4)在(3)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上兩點間的拋物線弧所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′, C的對應(yīng)點 C′恰好落在CB的延長線上,邊AB交邊 C′D′于點E.

(1)求證:BC=BC′;

(2) AB=2,BC=1,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案