【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當(dāng)x取任意一個(gè)值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當(dāng)x>2時(shí),M=y2②當(dāng)x<0時(shí),Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫(xiě)所有正確結(jié)論的序號(hào)).

【答案】②③

【解析】①觀察函數(shù)圖象,可知:當(dāng)x>2時(shí),拋物線y1=-x2+4x在直線y2=2x的下方,進(jìn)而可得出當(dāng)x>2時(shí),M=y1,結(jié)論①錯(cuò)誤;

②觀察函數(shù)圖象,可知:當(dāng)x<0時(shí),拋物線y1=-x2+4x在直線y2=2x的下方,進(jìn)而可得出當(dāng)x<0時(shí),M=y1,再利用二次函數(shù)的性質(zhì)可得出Mx的增大而增大,結(jié)論②正確;

③利用配方法可找出拋物線y1=-x2+4x的最大值,由此可得出:使得M大于4x的值不存在,結(jié)論③正確;

④利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出當(dāng)M=2時(shí)的x值,由此可得出:若M=2,則x=12+,結(jié)論④錯(cuò)誤.

此題得解.

①當(dāng)x>2時(shí),拋物線y1=-x2+4x在直線y2=2x的下方,

∴當(dāng)x>2時(shí),M=y1,結(jié)論①錯(cuò)誤;

②當(dāng)x<0時(shí),拋物線y1=-x2+4x在直線y2=2x的下方,

∴當(dāng)x<0時(shí),M=y1

Mx的增大而增大,結(jié)論②正確;

③∵y1=-x2+4x=-(x-2)2+4,

M的最大值為4,

∴使得M大于4x的值不存在,結(jié)論③正確;

④當(dāng)M=y1=2時(shí),有-x2+4x=2,

解得:x1=2-(舍去),x2=2+

當(dāng)M=y2=2時(shí),有2x=2,

解得:x=1.

∴若M=2,則x=12+,結(jié)論④錯(cuò)誤.

綜上所述:正確的結(jié)論有②③

故答案為:②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我縣新區(qū)部分小區(qū)位置簡(jiǎn)圖.設(shè)港澳城為點(diǎn)A,水榭花都為點(diǎn)B,朝陽(yáng)家園為點(diǎn)C,濱海華庭為點(diǎn)D,陽(yáng)光家園為點(diǎn)E,盛世嘉苑為點(diǎn)F,設(shè)每個(gè)小格的單位為1

1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫(xiě)出六個(gè)小區(qū)的坐標(biāo);

2)依次連接點(diǎn)A、C、E、B,請(qǐng)求出四邊形ACEB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DEDF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF;

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個(gè)圖案用 根火柴棒,擺第②個(gè)圖案用 根火柴棒,擺第③個(gè)圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個(gè)圖案用多少根火柴棒?

(3)計(jì)算一下擺121根火柴棒時(shí),是第幾個(gè)圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在正方形ABCD中,點(diǎn)PAC上,PEABE,PFBCF.

1)試判斷線段EFPD的長(zhǎng)是否相等,并說(shuō)明理由.

2)若點(diǎn)OAC的中點(diǎn),判斷OFOE之間有怎樣的位置和數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC是等邊三角形,D為邊AC的中點(diǎn),AEEC,BDEC

1)求證:BDA≌△CEA;

2)請(qǐng)判斷ADE是什么三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式,使它成為一個(gè)整式的完全平方,則這個(gè)單項(xiàng)式可以是__________________.(填寫(xiě)符合條件的一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過(guò)AB的中點(diǎn)D.若⊙O的半徑為,AB=4,則BC的長(zhǎng)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,對(duì)四邊形ABCD是平行四邊形的下列判斷,正確的打,錯(cuò)誤的打“×”

1)因?yàn)?/span>ADBC,AB=CD,所以ABCD是平行四邊形.____

2)因?yàn)?/span>ABCD,AD=BC,所以ABCD是平行四邊形.____

3)因?yàn)?/span>ADBCAD=BC,所以ABCD是平行四邊形.____

4)因?yàn)?/span>ABCD,ADBC,所以ABCD是平行四邊形.____

5)因?yàn)?/span>AB=CD,AD=BC,所以ABCD是平行四邊形.____

6)因?yàn)?/span>AD=CD,AB=AC,所以ABCD是平行四邊形.____

查看答案和解析>>

同步練習(xí)冊(cè)答案