【題目】有下列說法:()單項(xiàng)式的系數(shù)、次數(shù)都是;()多項(xiàng)式的系數(shù)是,它是三次二項(xiàng)式;()單項(xiàng)式與都是七次單項(xiàng)式;(4)單項(xiàng)式和的系數(shù)分別是或;()是二次單項(xiàng)式;()與都是整式,其中正確的說法有( ).
A.個(gè)B. C.個(gè)D.個(gè)
【答案】A
【解析】
解決本題關(guān)鍵是搞清整式、單項(xiàng)式、多項(xiàng)式的概念,緊扣概念作出判斷.
根據(jù)單項(xiàng)式和多項(xiàng)式的概念可知,單項(xiàng)式的系數(shù)是字母前的數(shù)字,次數(shù)是字母的指數(shù)和;多項(xiàng)式是若干個(gè)單項(xiàng)式的和.故(1),(2),(3)(4)(5)(6)都錯(cuò).
其中,(1)單項(xiàng)式的系數(shù)、次數(shù)都是1;
(2)多項(xiàng)式-3x2+x-1不能說多項(xiàng)式的系數(shù),它是2次3項(xiàng)式;
(3)單項(xiàng)式-34x2y是3次單項(xiàng)式,是6次單項(xiàng)式;
(4)單項(xiàng)式-和-的系數(shù)分別是-和-π;
(5)是多項(xiàng)式;
(6)是整式,是分式.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)M為CD中點(diǎn),將△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,則 α 與 β 之間的數(shù)量關(guān)系為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點(diǎn)D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,后求值
(1)(2a-3b)(3b+2a)-(a-2b)2,其中:a=-2,b=3;
(2)[(xy+2)(xy-2)-2x2y2+4]÷(xy),其中x=10,y=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:一般地,個(gè)相同的因數(shù)相乘 ,記為.如,此時(shí),叫做以為底的對數(shù),記為(即).一般地,若,(且,),則叫做以為底的對數(shù),記為(即).如,則叫做以為底的對數(shù),記為(即).
(1)計(jì)算以下各對數(shù)的值:__________,__________,__________.
(2)觀察(1)中三數(shù)、,之間滿足怎樣的關(guān)系式,、、之間又滿足怎樣的關(guān)系式;
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?__________.(且,,)
(4)根據(jù)冪的運(yùn)算法則:以及對數(shù)的含義證明上述結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與⊙O,AB是⊙O的直徑,AD⊥于點(diǎn)D.
(1)如圖①,當(dāng)直線與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大。
(2)如圖②,當(dāng)直線與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是三角形 內(nèi)一點(diǎn),射線PD//AC ,射線PB//AB .
(1)當(dāng)點(diǎn)D,E分別在AB,BC 上時(shí),
①補(bǔ)全圖1:
②猜想 與 的數(shù)量關(guān)系,并證明;,
(2)當(dāng)點(diǎn)都在線段上時(shí),請先畫出圖形,想一想你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com