【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關系,并說明理由.
【答案】
(1)解:∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=105°,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠EDC.
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC﹣∠EDC=105°﹣∠EDC=45°+∠EDC,
解得:∠CDE=30°
(2)解:∠CDE= ∠BAD,
理由:設∠BAD=x,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=45°+x,
∵∠AED是△CDE的外角,
∴∠AED=∠C+∠CDE,
∵∠B=∠C,∠ADE=∠AED,
∴∠ADC﹣∠CDE=∠45°+x﹣∠CDE=45°+∠CDE,
得:∠CDE= ∠BAD
【解析】(1)先根據(jù)三角形外角的性質(zhì)得出∠ADC=∠B+∠BAD=∠B+60°=105°,∠AED=∠C+∠EDC,再根據(jù)∠B=∠C,∠ADE=∠AED即可得出結(jié)論;(2)利用(1)的思路與方法解答即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB邊上,將△CBD沿CD折疊,使點B恰好落在AC邊上的點E處,若∠A=26°,則∠CDE度數(shù)為( )
A.71°
B.64°
C.80°
D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和2.B布袋中有三個完全相同的小球,分別標有數(shù)字﹣2,﹣3和﹣4.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).
(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;
(2)求點Q落在直線y=﹣x﹣2上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)與一次函數(shù)的圖象交于點A.
(1)求點A的坐標;
(2)設x軸上有一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖象于點B、C,連接OC.若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】歐亞超市舉行店慶活動,對甲、乙兩種商品實行打折銷售,打折前,購買3件甲商品和1件乙商品需用190元;購買2件甲商品和3件乙商品需用220元.
(1)打折前甲乙兩種商品單價各為多少元?
(2)張先生在店慶期間,購買10件甲商品和10件乙商品僅需735元,問這比
不打折前少花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x、y的二元一次方程組 ,
(1)求這個方程組的解(用含m的式子表示);
(2)若這個方程組的解x,y滿足2x﹣y>1成立,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲、乙為兩把不同刻度的直尺,且同一把直尺上的刻度之間距離相等,小研此兩把直尺緊貼,并將兩直尺上的刻度 彼此對準后,發(fā)現(xiàn)甲尺的刻度 會對準乙尺的刻度 ,如圖1所示,若今將甲尺向右平移且平移過程中兩把直尺維持緊貼,使得甲尺的刻度 會對準乙尺的刻度 ,如圖2所示,則此時甲尺的刻度 會對準乙尺的刻度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點,AD=AB,AD,BC的延長線相交于點E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com