如圖,直線y=3x和y=2x分別與直線x=2相交于點A、B,將拋物線y=x2沿線段OB移動,使其頂點始終在線段OB上,拋物線與直線x=2相交于點C,設△AOC的面積為S,求S的取值范圍.
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,在平面直角坐標系中,拋物線過點A(6,0)和點B(3,).
(1)求拋物線的解析式;
(2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;
(3)在(2)的條件下,拋物線上是否存在點M,使與相似?如果存在,求出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).
(1)求△ABC中邊BC上高AD;
(2)當x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與x軸交于點B、C,與y軸交于點E,且點B在點C的左側(cè).
(1)若拋物線過點M(-2,-2),求實數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點P,使CP+EP的值最小,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對稱軸和C點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C(0,4),頂點為(1,).
(1)求拋物線的函數(shù)表達式;
(2)如圖1,設拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標.
(3)如圖2,若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EF∥AC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù).
(1)求出該函數(shù)圖象的頂點坐標,圖象與x軸的交點坐標.
(2)當x在什么范圍內(nèi)時,y隨x的增大而增大?
(3)當x在什么范圍內(nèi)時,?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(12分)某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用。根據(jù)規(guī)定,每個房間每天的房價不得高于340元。設每個房間的房價每天增加x元(x為10的正整數(shù)倍)。
(1) 設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2) 設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3) 一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com