如圖直角三角形AOB順時(shí)針旋轉(zhuǎn)后與△COD重合,若∠AOD=127°,則旋轉(zhuǎn)角度是      

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:直角三角形AOB中,∠AOB=90°,OA=3厘米,OB=4厘米.以O(shè)為坐標(biāo)原點(diǎn)如圖建立平面直角坐標(biāo)系.設(shè)P、Q分別為AB邊,OB邊上的動(dòng)點(diǎn),它們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動(dòng),移動(dòng)的速度都為1厘米每秒.設(shè)P、Q精英家教網(wǎng)運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤4).
(1)求△OPQ的面積S與(厘米2)與t的函數(shù)關(guān)系式;并指出當(dāng)t為何值時(shí)S的最大值是多少?
(2)當(dāng)t為何值時(shí),△BPQ和△AOB相似;
(3)當(dāng)t為何值時(shí),△OPQ為直角三角形;
(4)①試證明無論t為何值,△OPQ不可能為正三角形;
②若點(diǎn)P的移動(dòng)速度不變,試改變點(diǎn)Q的運(yùn)動(dòng)速度,使△OPQ為正三角形,求出點(diǎn)Q的運(yùn)動(dòng)速度和此時(shí)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吳中區(qū)二模)已知一個(gè)直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D.

(1)如圖1,若折疊后使點(diǎn)B與點(diǎn)O重合,則點(diǎn)D的坐標(biāo)為
(1,2)
(1,2)
;
(2)如圖2,若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo);
(3)如圖3,若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,設(shè)OB′=x,OC=y,試寫出y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:雙色筆記七年級(jí)數(shù)學(xué)(上)(華東師大版課標(biāo)本) 題型:044

如圖,三角形AOB是直角三角形,且AO=OB=10厘米,AO是半圓OCA的直徑,以B為圓心,以BO為半徑的扇形OBD交AB于D,求陰影部分的面積.(不規(guī)則圖形的面積宜用割補(bǔ)法)

查看答案和解析>>

同步練習(xí)冊(cè)答案