【題目】清明節(jié)假期,小紅和小陽隨爸媽去旅游,他們在景點看到一棵古松樹,小紅驚訝的說:“呀!這棵樹真高!有60多米.”小陽卻不以為然:“60多米?我看沒有.”兩個人爭論不休,爸爸笑著說:“別爭了,正好我?guī)Я艘桓比前,用你們學過的知識量一量、算一算,看誰說的對吧!”
小紅和小陽進行了以下測量:如圖所示,小紅和小陽分別在樹的東西兩側同一地平線上,他們用手平托三角板,保持三角板的一條直角邊與地平面平行,然后前后移動各自位置,使目光沿著三角板的斜邊正好經過樹的最高點,這時,測得小紅和小陽之間的距離為135米,他們的眼睛到地面的距離都是1.6米.
(1)請在指定區(qū)域內畫出小紅和小陽測量古松樹高的示意圖;
(2)通過計算說明小紅和小陽誰的說法正確(計算結果精確到0.1)(參考數據:≈1.41,≈1.73,≈2.24)
【答案】(1)詳見解析;(2)小陽的說法正確.
【解析】
(1)如圖,根據題意畫出圖形即可;
(2)由題意得,四邊形CDEF是矩形,于是得到CD=BG=EF=1.6米,CF=DE=135米,設AG=x米,解直角三角形即可得到結論.
(1)如圖,AB表示古松樹的高,CD,EF分別表示小紅和小陽的眼睛到地面的距離;
(2)由題意得,四邊形CDEF是矩形,
∴CD=BG=EF=1.6米,CF=DE=135米,
設AG=x米,
∵∠ACG=30°,∠AFG=45°,∠AGC=∠AGF=90°,
∴GF=AG=x,AC=2AG=2x,
∴ 米,
∴DE=BD+BE=CG+GF=
∴x≈49.45,
∴AB=AG+GB=51.1米,
∴古松樹高=51.1米<60米,
∴小陽的說法正確.
科目:初中數學 來源: 題型:
【題目】(1)發(fā)現規(guī)律:
特例1:===;
特例2:===;
特例3:=4;
特例4:______(填寫一個符合上述運算特征的例子);
(2)歸納猜想:
如果n為正整數,用含n的式子表示上述的運算規(guī)律為:______;
(3)證明猜想:
(4)應用規(guī)律:
①化簡:×=______;
②若=19,(m,n均為正整數),則m+n的值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度( )
A. 1 B. 5 C. 1或5 D. 2或4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, ∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,又分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D.
求證:(1)點D在AB的中垂線上.
(2)當CD=2時,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】電影《厲害了,我的國》震撼上演后,引起了大家的強烈共鳴,當“復興號”一幕又一幕的奔馳在祖國廣袤的大地上,中國高鐵的車輪快速的滾出了嶄新中國的新畫卷.中國高鐵的飛速發(fā)展,使越來越多的人選擇高鐵出行.為了保證市民出行方便,某市的高鐵站出入口與地鐵站出入口進行對接.已知某人沿著坡角為30°的樓梯AB從A行至B,后沿BC路線上斜坡CD,坡角為30°,再行走一段距離DE,到達高鐵入口處.若入口處樓梯EF的坡角為45°,DE∥BC∥AF,AB=20米,CD=4米,那么EF的長度是多少米?(保留0.1米)(≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為(0,3),點B和點D的坐標分別為(m,0),(n,4),且m>0,四邊形ABCD是矩形.
(1)如圖1,當四邊形ABCD為正方形時,求m,n的值;
(2)在圖2中,畫出矩形ABCD,簡要說明點C,D的位置是如何確定的,并直接用含m的代數式表示點C的坐標;
(3)探究:當m為何值時,矩形ABCD的對角線AC的長度最短.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,
n>0),E點在邊BC上,F點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線過點E.
(1) 若m=-8,n =4,直接寫出E、F的坐標;
(2) 若直線EF的解析式為,求k的值;
(3) 若雙曲線過EF的中點,直接寫出tan∠EFO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com