如圖所示,一個(gè)底面直徑是20厘米的圓柱形水杯,里面浸沒(méi)著一個(gè)底面半徑是3厘米,高20厘米的圓錐形鉛錘.當(dāng)取出鉛錘后,杯里的水下降多少厘米?
分析:由題意可知:當(dāng)鉛錘取出后,下降的水的體積就等于鉛錘的體積,鉛錘的體積容易求出,用鉛錘的體積除以容器的底面積就是下降的水的高度,從而問(wèn)題得解.
解答:解:
1
3
×3.14×32×20÷[3.14×(20÷2)2],
=
1
3
×3.14×9×20÷[3.14×100],
=3.14×3×20÷314,
=188.4÷314,
=0.6(厘米);
答:當(dāng)鉛錘取出后,杯中的水面會(huì)下降0.6厘米.
點(diǎn)評(píng):解答此題的關(guān)鍵是明白:當(dāng)鉛錘取出前后,底面積是不變的,下降的水的體積就等于鉛錘的體積,從而問(wèn)題得解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解決后面的問(wèn)題.
★閱讀材料:
我國(guó)是歷史上較早發(fā)現(xiàn)并運(yùn)用“勾股定理”的國(guó)家之一.我中古代把直角三角形中較短的直角邊稱(chēng)為“勾”,較長(zhǎng)的直角邊稱(chēng)為“股”,斜邊稱(chēng)為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請(qǐng)運(yùn)用“勾股定理”解決以下問(wèn)題:

(1)如圖一,分別以直角三角形的邊為邊長(zhǎng)作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個(gè)園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個(gè)小園孔,則一條直達(dá)底部的直吸管的最大長(zhǎng)度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計(jì).
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點(diǎn)有一只螞蟻,它想吃到與A點(diǎn)相對(duì)的B點(diǎn)處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開(kāi)后得到一個(gè)長(zhǎng)方形,如圖五所示(A點(diǎn)的位置已經(jīng)給出),請(qǐng)?jiān)趫D中中標(biāo)出B點(diǎn)的位置并連接AB.
②小聰認(rèn)為線段AB的長(zhǎng)度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長(zhǎng)方形的底面A點(diǎn)有一只螞蟻,想吃到上底面與A點(diǎn)相對(duì)的B點(diǎn)處的食物,它沿長(zhǎng)方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

一個(gè)直圓柱,底面直徑是8厘米,高是10厘米.把它沿著底面直徑豎直切開(kāi),(如圖所示)得到的立體圖形的體積是
251.2立方厘米
251.2立方厘米
,表面積是
255.84平方厘米
255.84平方厘米
(π取3.14)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列材料,并解決后面的問(wèn)題.
★閱讀材料:
我國(guó)是歷史上較早發(fā)現(xiàn)并運(yùn)用“勾股定理”的國(guó)家之一.我中古代把直角三角形中較短的直角邊稱(chēng)為“勾”,較長(zhǎng)的直角邊稱(chēng)為“股”,斜邊稱(chēng)為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請(qǐng)運(yùn)用“勾股定理”解決以下問(wèn)題:

(1)如圖一,分別以直角三角形的邊為邊長(zhǎng)作正方形,其中s1=400,s2=225,則s3=________.
(2)如圖二,是一個(gè)園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個(gè)小園孔,則一條直達(dá)底部的直吸管的最大長(zhǎng)度是________.注:罐壁厚度和頂部園孔直徑忽略不計(jì).
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=________. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點(diǎn)有一只螞蟻,它想吃到與A點(diǎn)相對(duì)的B點(diǎn)處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開(kāi)后得到一個(gè)長(zhǎng)方形,如圖五所示(A點(diǎn)的位置已經(jīng)給出),請(qǐng)?jiān)趫D中中標(biāo)出B點(diǎn)的位置并連接AB.
②小聰認(rèn)為線段AB的長(zhǎng)度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是________厘米.注:π值取3.
(5)如圖六,在長(zhǎng)方形的底面A點(diǎn)有一只螞蟻,想吃到上底面與A點(diǎn)相對(duì)的B點(diǎn)處的食物,它沿長(zhǎng)方形表面爬行的最短路程是________厘米.

查看答案和解析>>

同步練習(xí)冊(cè)答案