【題目】有3頂紅帽子,4頂黑 帽子,5頂白帽子。讓10個(gè)人從矮到高站成一隊(duì),給他們每個(gè)人頭上戴一頂帽子。每個(gè)人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。 (所以最后一個(gè)人可以看見前面9個(gè)人頭上帽子的顏色,而最前面那個(gè)人誰的帽子都看不見,F(xiàn)在從最后那個(gè)人開始,問他是不是知道自己戴的帽子顏色,如果他回 答說不知道,就繼續(xù)問他前面那個(gè)人。假設(shè)最前面那個(gè)人一定會(huì)知道自己戴的是黑帽子。為什么?
【答案】最前面的那個(gè)人聽見后面兩個(gè)人都說了“不知道”,他假設(shè)自己戴的是白帽子,于是中間那個(gè)人就看見他戴的白帽子。那么中間那個(gè)人會(huì)作如下推理:“假設(shè)我戴了白帽子,那么最后那個(gè)人就會(huì)看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應(yīng)該明白他自己戴的是黑帽子,現(xiàn)在他說不知道,就說明我戴了白帽子這個(gè)假定是錯(cuò)的,所以我戴了黑帽子。”問題是中間那人也說不知道,所以最前面那個(gè)人知道自己戴白帽子的假定是錯(cuò)的,所以他推斷出自己戴了黑帽子。
【解析】“有3頂黑帽子,2頂白帽子。讓三個(gè)人從前到后站成一排,給他們每個(gè)人頭上戴一頂帽子。每個(gè)人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最后一個(gè)人可以看見前面兩個(gè)人頭上帽子的顏色,中間那個(gè)人看得見前面那個(gè)人的帽子顏色但看不見在他后面那個(gè)人的帽子顏色,而最前面那個(gè)人誰的帽子都看不見,F(xiàn)在從最后那個(gè)人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續(xù)問他前面那個(gè)人。事實(shí)上他們?nèi)齻(gè)戴的都是黑帽子,那么最前面那個(gè)人一定會(huì)知道自己戴的是黑帽子。為什么?”
答案是,最前面的那個(gè)人聽見后面兩個(gè)人都說了“不知道”,他假設(shè)自己戴的是白帽子,于是中間那個(gè)人就看見他戴的白帽子。那么中間那個(gè)人會(huì)作如下推理:“假設(shè)我戴了白帽子,那么最后那個(gè)人就會(huì)看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應(yīng)該明白他自己戴的是黑帽子,現(xiàn)在他說不知道,就說明我戴了白帽子這個(gè)假定是錯(cuò)的,所以我戴了黑帽子。”問題是中間那人也說不知道,所以最前面那個(gè)人知道自己戴白帽子的假定是錯(cuò)的,所以他推斷出自己戴了黑帽子。
我們把這個(gè)問題推廣成如下的形式:
“有若干種顏色的帽子,每種若干頂。假設(shè)有若干個(gè)人從前到后站成一排,給他們每個(gè)人頭上戴一頂帽子。每個(gè)人都看不見自己戴的帽子的顏色,而且每個(gè)人都看得見在他前面所有人頭上帽子的顏色,卻看不見在他后面任何人頭上帽子的顏色,F(xiàn)在從最后那個(gè)人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續(xù)問他前面那個(gè)人。一直往前問,那么一定有一個(gè)人知道自己所戴的帽子顏色。”
當(dāng)然要假設(shè)一些條件:
1)首先,帽子的總數(shù)一定要大于人數(shù),否則帽子都不夠戴。
2)“有若干種顏色的帽子,每種若干頂,有若干人”這個(gè)信息是隊(duì)列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個(gè)條件中的“若干”不一定非要具體一一給出數(shù)字來。
這個(gè)信息具體地可以是象上面經(jīng)典的形式,列舉出每種顏色帽子的數(shù)目“有3頂黑帽子,2頂白帽子,3個(gè)人”,也可以是“有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人”,甚至連具體人數(shù)也可以不知道,“有不知多少人排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1”,這時(shí)候那個(gè)排在最后的人并不知道自己排在最后——直到開始問他時(shí)發(fā)現(xiàn)在他回答前沒有別人被問到,他才知道他在最后。在這個(gè)帖子接下去的部分當(dāng)我出題的時(shí)候我將只寫出“有若干種顏色的帽子,每種若干頂,有若干人”這個(gè)預(yù)設(shè)條件,因?yàn)檫@部分確定了,題目也就確定了。
3)剩下的沒有戴在大家頭上的帽子當(dāng)然都被藏起來了,隊(duì)伍里的人誰都不知道都剩下些什么帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來。當(dāng)然他們的視力也很好,能看到前方任意遠(yuǎn)的地方。他們極其聰明,邏輯推理是極好的?偠灾,只要理論上根據(jù)邏輯推導(dǎo)得出來,他們就一定推導(dǎo)得出來。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會(huì)試圖去猜或者作弊偷看——不知為不知。
5)后面的人不能和前面的人說悄悄話或者打暗號(hào)。
當(dāng)然,不是所有的預(yù)設(shè)條件都能給出一個(gè)合理的題目。比如有99頂黑帽子,99頂白帽子,2個(gè)人,無論怎么戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個(gè)人組成的隊(duì)伍里,這個(gè)人也是不可能說出自己帽子的顏色的。
但是下面這幾題是合理的題目:
1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個(gè)人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個(gè)人。
3)n頂黑帽子,n-1頂白帽子,n個(gè)人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個(gè)人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1。
大家可以先不看我下面的分析,試著做做這幾題。
如果按照上面3頂黑帽2頂白帽時(shí)的推理方法去做,那么10個(gè)人就可以把我們累死,別說5000個(gè)人了。但是3)中的n是個(gè)抽象的數(shù),考慮一下怎么解決這個(gè)問題,對(duì)解決一般的問題大有好處。
假設(shè)現(xiàn)在n個(gè)人都已經(jīng)戴好了帽子,問排在最后的那一個(gè)人他頭上的帽子是什么顏色,什么時(shí)候他會(huì)回答“知道”?很顯然,只有在他看見前面n-1個(gè)人都戴著白帽時(shí)才可能,因?yàn)檫@時(shí)所有的n-1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那么他就無法排除自己頭上是黑帽子的可能——即使他看見前面所有人都是黑帽,他還是有可能戴著第n頂黑帽。
現(xiàn)在假設(shè)最后那個(gè)人的回答是“不知道”,那么輪到問倒數(shù)第二人。根據(jù)最后面那位的回答,他能推斷出什么呢?如果他看見的都是白帽,那么他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那么最后那人應(yīng)該看見一片白帽,問到他時(shí)他就該回答“知道”了。但是如果倒數(shù)第二人看見前面至少有一頂黑帽,他就無法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最后那人無法回答“知道”;他自然也有可能戴著黑帽。
這樣的推理可以繼續(xù)下去,但是我們已經(jīng)看出了苗頭。最后那個(gè)人可以回答“知道”當(dāng)且僅當(dāng)他看見的全是白帽,所以他回答“不知道”當(dāng)且僅當(dāng)他至少看見了一頂黑帽。這就是所有帽子顏色問題的關(guān)鍵!
如果最后一個(gè)人回答“不知道”,那么他至少看見了一頂黑帽,所以如果倒數(shù)第二人看見的都是白帽,那么最后那個(gè)人看見的至少一頂黑帽在哪里呢?不會(huì)在別處,只能在倒數(shù)第二人自己的頭上。這樣的推理繼續(xù)下去,對(duì)于隊(duì)列中的每一個(gè)人來說就成了:
“在我后面的所有人都看見了至少一頂黑帽,否則的話他們就會(huì)按照相同的判斷斷定自己戴的是黑帽,所以如果我看見前面的人戴的全是白帽的話,我頭上一定戴著我身后那個(gè)人看見的那頂黑帽。”
我們知道最前面的那個(gè)人什么帽子都看不見,就不用說看見黑帽了,所以如果他身后的所有人都回答說“不知道”,那么按照上面的推理,他可以確定自己戴的是黑帽,因?yàn)樗砗蟮娜吮囟ǹ匆娏艘豁敽诿?/span>——只能是第一個(gè)人他自己頭上的那頂。事實(shí)上很明顯,第一個(gè)說出自己頭上是什么顏色帽子的那個(gè)人,就是從隊(duì)首數(shù)起的第一個(gè)戴黑帽子的人,也就是那個(gè)從隊(duì)尾數(shù)起第一個(gè)看見前面所有人都戴白帽子的人。
這樣的推理也許讓人覺得有點(diǎn)循環(huán)論證的味道,因?yàn)樯厦婺嵌瓮评碇邪?/span>“如果別人也使用相同的推理”這樣的意思,在邏輯上這樣的自指式命題有點(diǎn)危險(xiǎn)。但是其實(shí)這里沒有循環(huán)論證,這是類似數(shù)學(xué)歸納法的推理,每個(gè)人的推理都建立在他后面那些人的推理上,而對(duì)于最后一個(gè)人來說,他的身后沒有人,所以他的推理不依賴于其他人的推理就可以成立,是歸納中的第一個(gè)推理。稍微思考一下,我們就可以把上面的論證改得適合于任何多種顏色的推論:
“如果我們可以從假設(shè)斷定某種顏色的帽子一定會(huì)在隊(duì)列中出現(xiàn),從隊(duì)尾數(shù)起第一個(gè)看不見這種顏色的帽子的人就立刻可以根據(jù)和此論證相同的論證來作出判斷,他戴的是這種顏色的帽子。現(xiàn)在所有我身后的人都回答不知道,所以我身后的人也看見了此種顏色的帽子。如果在我前面我見不到此顏色的帽子,那么一定是我戴著這種顏色的帽子。”
當(dāng)然第一個(gè)人的初始推理相當(dāng)簡單:“隊(duì)列中一定有人戴這種顏色的帽子,現(xiàn)在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的頭上了。”
對(duì)于題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個(gè)人戴,隊(duì)列中每種顏色至少都該有一頂,于是從隊(duì)尾數(shù)起第一個(gè)看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過這點(diǎn)我們也可以看到,最多問到從隊(duì)首數(shù)起的第三人時(shí),就應(yīng)該有人回答“知道”了,因?yàn)閺年?duì)首數(shù)起的第三人最多只能看見兩頂帽子,所以最多看見兩種顏色,如果他后面的人都回答“不知道”,那么他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的那種顏色的帽子。
題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個(gè)人戴,那么隊(duì)列中一定至少有一頂白帽子,因?yàn)槠渌伾悠饋硪还膊?頂,所以隊(duì)列中一定會(huì)有人回答“知道”。
題4)的規(guī)模大了一點(diǎn),但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數(shù)量是1+……+99=4950,所以隊(duì)列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身后的人都回答“不知道”,那么那個(gè)看不見顏色100帽子的人就可以斷定自己戴著這種顏色的帽子。
至于5)、6)“有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人”以及“有不知多少人排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1”,原理完全相同,我就不具體分析了。
最后要指出的一點(diǎn)是,上面我們只是論證了,如果我們可以根據(jù)各種顏色帽子的數(shù)量和隊(duì)列中的人數(shù)判斷出在隊(duì)列中至少有一頂某種顏色的帽子,那么一定有一人可以判斷出自己頭上的帽子的顏色。因?yàn)槿绻猩砗蟮娜硕蓟卮?/span>“不知道”的話,那個(gè)從隊(duì)尾數(shù)起第一個(gè)看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這并不是說在詢問中一定是由他來回答“知道”的,因?yàn)檫可能有其他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊(duì)列如下:(箭頭表示隊(duì)列中人臉朝的方向)
白白黑黑黑黑紅紅紅白→
那么在隊(duì)尾第一人就立刻可以回答他頭上的是白帽,因?yàn)樗匆娏怂械?頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】一臺(tái)黑白電視機(jī)價(jià)錢620元,一臺(tái)電風(fēng)扇的價(jià)錢比一臺(tái)黑白電視機(jī)價(jià)錢的一半還少18元,一臺(tái)電風(fēng)扇多少元?
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】有100根火柴,甲、乙兩人輪流取,規(guī)定每次可取1~10根火柴,以先取完火柴的人為勝者.如果甲先取,那么誰有必勝策略?
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】填空.
(1)1個(gè)十和8個(gè)一組成的數(shù)是( ).
(2)2和10合起來是( ).
(3)17和19中間的數(shù)是( ).
(4)18里面去掉( )還剩10.
(5)2個(gè)十是( ).
(6)和15相鄰的數(shù)是( )和( ).
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】在一張長方形的桌面上放了n個(gè)一樣大小的圓形硬幣。這些硬幣中可能有一些不完全在桌面內(nèi),也可能有一些彼此重疊;當(dāng)再多放一個(gè)硬幣而它的圓心在桌面內(nèi)時(shí),新放的硬幣便必定與原先某些硬幣重疊。請證明整個(gè)桌面可以用4n個(gè)硬幣完全覆蓋。
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】一、二年級(jí)有6 個(gè)班,每個(gè)班有4 人參加舞蹈組,一共有多少人參加舞蹈組,后來舞蹈組又增加了10人,現(xiàn)在舞蹈組有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com