若函數(shù)y=lnx-ax的單調(diào)遞減區(qū)間為(1,+∞),則a的值是( 。A.0<a<1 | B.-1<a<0 | C.a(chǎn)=-1 | D.a(chǎn)=1 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)y=lnx-ax的單調(diào)遞減區(qū)間為(1,+∞),則a的值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)y=lnx-ax的單調(diào)遞減區(qū)間為(1,+∞),則a的值是( 。
A.0<a<1 | B.-1<a<0 | C.a(chǎn)=-1 | D.a(chǎn)=1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010-2011學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
若函數(shù)y=lnx-ax的單調(diào)遞減區(qū)間為(1,+∞),則a的值是( )
A.0<a<1
B.-1<a<0
C.a(chǎn)=-1
D.a(chǎn)=1
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點(diǎn)P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點(diǎn)P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點(diǎn)P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010年福建省福州三中高考數(shù)學(xué)模擬試卷(文科)(解析版)
題型:解答題
已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點(diǎn)P(1,f(1)),Q(e,f(e))的直線為l,則必存在x∈(1,e),使曲線y=f(x)在點(diǎn)(x,f(x))處的切線與直線l平行,求x的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
查看答案和解析>>