若f(n)=1+
1
2
+
1
3
+…+
1
2n+1
(n∈N*),則當(dāng)n=1時,f(n)為( 。
A.1B.
1
3
C.1+
1
2
+
1
3
D.非以上答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)=1+
1
2
+
1
3
+…+
1
2n+1
(n∈N*),則當(dāng)n=1時,f(n)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(n)=1+
1
2
+
1
3
+…+
1
2n+1
(n∈N*),則當(dāng)n=1時,f(n)為(  )
A.1B.
1
3
C.1+
1
2
+
1
3
D.非以上答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽模擬 題型:解答題

(理)已知f(x)=ax+
b
x
+2-2a(a>0)的圖象在點(1,f(1))處的切線與直線y=2x+1平行.
(I)求a,b滿足的關(guān)系式;
(II)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(III)證明:1+
1
3
+
1
5
+
…+
1
2n-1
1
2
(2n+1)+
n
2n+1
(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)(理)已知f(x)=ax+
b
x
+2-2a(a>0)的圖象在點(1,f(1))處的切線與直線y=2x+1平行.
(I)求a,b滿足的關(guān)系式;
(II)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(III)證明:1+
1
3
+
1
5
+
…+
1
2n-1
1
2
(2n+1)+
n
2n+1
(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于n∈N+的命題,下面四個判斷:
①若f(n)=1+2+22+…+2n,則f(1)=1;
②若f(n)=1+2+22+…+2n-1,則f(1)=1+2;
③若f(n)=1+
1
2
+
1
3
+…+
1
2n+1
,則f(1)=1+
1
2
+
1
3
;
④若f(n)=
1
n+1
+
1
n+2
+…+
1
3n+1
,則f(k+1)=f(k)+
1
3k+2
+
1
3k+3
+
1
3k+4
-
1
k+1
;
其中正確命題的序號為
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山一模)已知函數(shù)f(x)=ax-1-lnx(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)若不等式f(x)<0在區(qū)間[
1
2
,2]
上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)比較(1+1)(1+
1
3
)(1+
1
7
)…(1+
1
2n-1
)與e
3e2
的大小(n∈N*且n≥2,e是自然對數(shù)的底數(shù)).

查看答案和解析>>


同步練習(xí)冊答案