已知f(x)為定義在非零實(shí)數(shù)集上的可導(dǎo)函數(shù),且f(x)>xf′(x)在定義域上恒成立,則( 。
A.2012?f(2013)<2013?f(2012)
B.2012?f(2013)=2013?f(2012)
C.2012?f(2013)>2013?f(2012)
D.2012?f(2013)與2013?f(2012)大小不確定
A
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在非零實(shí)數(shù)集上的可導(dǎo)函數(shù),且f(x)>xf′(x)在定義域上恒成立,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)為定義在非零實(shí)數(shù)集上的可導(dǎo)函數(shù),且f(x)>xf′(x)在定義域上恒成立,則( 。
A.2012•f(2013)<2013•f(2012)
B.2012•f(2013)=2013•f(2012)
C.2012•f(2013)>2013•f(2012)
D.2012•f(2013)與2013•f(2012)大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲市攸縣二中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知f(x)為定義在非零實(shí)數(shù)集上的可導(dǎo)函數(shù),且f(x)>xf′(x)在定義域上恒成立,則( )
A.2012•f(2013)<2013•f(2012)
B.2012•f(2013)=2013•f(2012)
C.2012•f(2013)>2013•f(2012)
D.2012•f(2013)與2013•f(2012)大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若f-1(x+a)與f(x+a)互為反函數(shù),且f(a)=a(a為非零常數(shù)),則f(2a)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若f-1(x+a)與f(x+a)互為反函數(shù),且f(a)=a(a為非零常數(shù)),則f(2a)的值為( 。
A.2aB.a(chǎn)C.0D.-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年浙江省杭州二中高三(上)1月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若f-1(x+a)與f(x+a)互為反函數(shù),且f(a)=a(a為非零常數(shù)),則f(2a)的值為( )
A.2a
B.a(chǎn)
C.0
D.-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若f-1(x+a)與f(x+a)互為反函數(shù),且f(a)=a(a為非零常數(shù)),則f(2a)的值為


  1. A.
    2a
  2. B.
    a
  3. C.
    0
  4. D.
    -a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx+acosx+1-a,a∈R,x∈[0,
π
2
]

(I)求f(x)的對稱軸方程;
(II)若f(x)的最大值為
2
,求a的值及此時(shí)對應(yīng)x的值;
(III)若定義在非零實(shí)數(shù)集上的奇函數(shù)g(x)在(0,+∞)上是增函數(shù),且g(2)=0,求當(dāng)g[f(x)]<0恒成立時(shí),實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=asinx+acosx+1-a,a∈R,x∈[0,
π
2
]

(I)求f(x)的對稱軸方程;
(II)若f(x)的最大值為
2
,求a的值及此時(shí)對應(yīng)x的值;
(III)若定義在非零實(shí)數(shù)集上的奇函數(shù)g(x)在(0,+∞)上是增函數(shù),且g(2)=0,求當(dāng)g[f(x)]<0恒成立時(shí),實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類)已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>


同步練習(xí)冊答案