拋物線y=
1
2
x2-3
的頂點(diǎn)坐標(biāo)是( 。
A.(
1
2
,-3)
B.(-3,0)C.(0,-3)D.(0,3)
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1y1=
1
2
x2-x+1
,點(diǎn)F(1,1).
(I)求拋物線C1的頂點(diǎn)坐標(biāo);
(II)①若拋物線C1與y軸的交點(diǎn)為A,連接AF,并延長(zhǎng)交拋物線C1于點(diǎn)B,求證:
1
AF
+
1
BF
=2

②取拋物線C1上任意一點(diǎn)P(xP,yP)(0<xP<1),連接PF,并延長(zhǎng)交拋物線C1于Q(xQ,yQ).試判斷
1
PF
+
1
QF
=2
是否成立?請(qǐng)說(shuō)明理由;
(III)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2y2=
1
2
(x-h)2
,若2<x≤m時(shí),y2≤x恒成立,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C1y1=
1
2
x2-x+1
,點(diǎn)F(1,1).
(I)求拋物線C1的頂點(diǎn)坐標(biāo);
(II)①若拋物線C1與y軸的交點(diǎn)為A,連接AF,并延長(zhǎng)交拋物線C1于點(diǎn)B,求證:
1
AF
+
1
BF
=2

②取拋物線C1上任意一點(diǎn)P(xP,yP)(0<xP<1),連接PF,并延長(zhǎng)交拋物線C1于Q(xQ,yQ).試判斷
1
PF
+
1
QF
=2
是否成立?請(qǐng)說(shuō)明理由;
(III)將拋物線C1作適當(dāng)?shù)钠揭疲脪佄锞C2y2=
1
2
(x-h)2
,若2<x≤m時(shí),y2≤x恒成立,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于精英家教網(wǎng)點(diǎn)C,對(duì)稱軸為直線x=
1
2
,OA=2
,OD平分∠BOC交拋物線于點(diǎn)D(點(diǎn)D在第一象限).
(1)求拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BPD的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)N,使A、D、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=
1
2
,OA=2
,OD平分∠BOC交拋物線于點(diǎn)D(點(diǎn)D在第一象限).
(1)求拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BPD的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)N,使A、D、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

開(kāi)口方向,形狀與拋物線y=
1
2
x2
相同,且頂點(diǎn)坐標(biāo)為(-2,0)的拋物線是(  )
A.y=
1
2
(x+2)2
B.y=
1
2
(x-2)2
C.y=-
1
2
(x+2)2
D.y=-
1
2
(x-2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘭州)如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
-2<k<
1
2
-2<k<
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=
1
2
x2-3
的頂點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y=
1
2
x2-3
的頂點(diǎn)坐標(biāo)是( 。
A.(
1
2
,-3)
B.(-3,0)C.(0,-3)D.(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,二次函數(shù)y=-
1
2
x2-(m+3)x+m2-12
的圖象與x軸相交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<0,x2>0,圖象與y軸交于點(diǎn)C,OB=2OA;
(1)求二次函數(shù)的解析式;
(2)在x軸上,點(diǎn)A的左側(cè),求一點(diǎn)E,使△ECO與△CAO相似,并說(shuō)明直線EC經(jīng)過(guò)(1)中二次函數(shù)圖象的頂點(diǎn)D;
(3)過(guò)(2)中的點(diǎn)E的直線y=
1
4
x+b
與(1)中的拋物線相交于M、N兩點(diǎn),分別過(guò)M、N作x軸的垂線,垂足為M′、N′,點(diǎn)P為線段MN上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P作平行于y軸的直線交(1)中所求拋物線于點(diǎn)Q,是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=-
1
2
x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<0,x2>0,拋物線與y軸交于點(diǎn)C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點(diǎn)A的左側(cè),求一點(diǎn)E,使△ECO與△CAO相似,并說(shuō)明直線EC經(jīng)過(guò)(1)中拋物線的頂點(diǎn)D;
(3)過(guò)(2)中的點(diǎn)E的直線y=
1
4
x+b與(1)中的拋物線相交于M、N兩點(diǎn),分別過(guò)M、N作x軸的垂線,垂足為M′、N′,點(diǎn)P為線段MN上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P作平行于y軸的直線交(1)中所求拋物線于點(diǎn)Q.是否存在t值,使S精英家教網(wǎng)梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案