若正n邊形的一個外角為60°,則n的值為( 。
A.4B.5C.6D.8
C
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、若正n邊形的一個外角為60°,則n的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若正n邊形的一個外角為60°,則n的值為


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    8

查看答案和解析>>

科目:初中數(shù)學 來源:河北 題型:單選題

若正n邊形的一個外角為60°,則n的值為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學 來源:1+1輕巧奪冠·優(yōu)化訓練 數(shù)學 七年級下 (華東師大版) 銀版 華東師大版 題型:013

若正n邊形的一個外角為60°,則n的值是

[  ]

A.4

B.5

C.6

D.8

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(1999•河北)若正n邊形的一個外角為60°,則n的值為( )
A.4
B.5
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學 來源:1999年河北省中考數(shù)學試卷 題型:選擇題

(1999•河北)若正n邊形的一個外角為60°,則n的值為( )

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省三縣市中考數(shù)學一模試卷(解析版) 題型:解答題

在研究勾股定理時,同學們都見到過圖1,∠CBA=90°,四邊形ACKH、BCED、ABFG都是正方形.
(1)連接BK、AE得到圖2,則△CBK≌△CEA,此時兩個三角形全等的判定依據(jù)是______;過B作BM⊥KH于M,交AC于N,則S矩形KMNC=2S△CKB;同理S正方形BCED=2S△CEA,得S正方形BCED=S矩形KMNC,然后可證得勾股定理.
(2)在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學們可以探究△BCD、△ABG、△ACK的面積關(guān)系是______.
(3)為了研究問題的需要,將圖1中的Rt△ABC也進行“退化”為銳角△ABC,并擦去正方形ACKH得圖4,由AB、BC兩邊向三角形外作正△BCD、正△ABG,△BCD的外接圓與AD交于點P,此時C、P、G共線,從△ABC內(nèi)一點到A、B、C三個頂點的距離之和最小的點恰為點P(已經(jīng)被他人證明).設BC=3,CA=4,∠BCA=60°.求PA+PB+PC的值.
 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省臺州市聯(lián)考(天臺縣椒江區(qū)玉環(huán)縣)中考數(shù)學一模試卷(解析版) 題型:解答題

在研究勾股定理時,同學們都見到過圖1,∠CBA=90°,四邊形ACKH、BCED、ABFG都是正方形.
(1)連接BK、AE得到圖2,則△CBK≌△CEA,此時兩個三角形全等的判定依據(jù)是______;過B作BM⊥KH于M,交AC于N,則S矩形KMNC=2S△CKB;同理S正方形BCED=2S△CEA,得S正方形BCED=S矩形KMNC,然后可證得勾股定理.
(2)在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學們可以探究△BCD、△ABG、△ACK的面積關(guān)系是______.
(3)為了研究問題的需要,將圖1中的Rt△ABC也進行“退化”為銳角△ABC,并擦去正方形ACKH得圖4,由AB、BC兩邊向三角形外作正△BCD、正△ABG,△BCD的外接圓與AD交于點P,此時C、P、G共線,從△ABC內(nèi)一點到A、B、C三個頂點的距離之和最小的點恰為點P(已經(jīng)被他人證明).設BC=3,CA=4,∠BCA=60°.求PA+PB+PC的值.
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•浙江一模)在研究勾股定理時,同學們都見到過圖1,∠CBA=90°,四邊形ACKH、BCED、ABFG都是正方形.
(1)連接BK、AE得到圖2,則△CBK≌△CEA,此時兩個三角形全等的判定依據(jù)是
SAS
SAS
;過B作BM⊥KH于M,交AC于N,則S矩形KMNC=2S△CKB;同理S正方形BCED=2S△CEA,得S正方形BCED=S矩形KMNC,然后可證得勾股定理.
(2)在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學們可以探究△BCD、△ABG、△ACK的面積關(guān)系是
S△BCD+S△ABG=S△ACK
S△BCD+S△ABG=S△ACK

(3)為了研究問題的需要,將圖1中的Rt△ABC也進行“退化”為銳角△ABC,并擦去正方形ACKH得圖4,由AB、BC兩邊向三角形外作正△BCD、正△ABG,△BCD的外接圓與AD交于點P,此時C、P、G共線,從△ABC內(nèi)一點到A、B、C三個頂點的距離之和最小的點恰為點P(已經(jīng)被他人證明).設BC=3,CA=4,∠BCA=60°.求PA+PB+PC的值.
 

查看答案和解析>>


同步練習冊答案