設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則( 。
A.f(1)=3,f(2)=4B.f(1)=2,f(2)=3C.f(2)=4,f(4)=5D.f(2)=3,f(3)=4
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則(  )
A.f(1)=3,f(2)=4B.f(1)=2,f(2)=3C.f(2)=4,f(4)=5D.f(2)=3,f(3)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省名校新高考研究聯(lián)盟高三(上)12月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則( )
A.f(1)=3,f(2)=4
B.f(1)=2,f(2)=3
C.f(2)=4,f(4)=5
D.f(2)=3,f(3)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省紹興一中高三(下)回頭考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則( )
A.f(1)=3,f(2)=4
B.f(1)=2,f(2)=3
C.f(2)=4,f(4)=5
D.f(2)=3,f(3)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省名校新高考研究聯(lián)盟高三(上)12月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則( )
A.f(1)=3,f(2)=4
B.f(1)=2,f(2)=3
C.f(2)=4,f(4)=5
D.f(2)=3,f(3)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)f(x)在(0,+∞)上是單調(diào)遞增函數(shù),當(dāng)n∈N*時,f(n)∈N*,且f[f(n)]=2n+1,則


  1. A.
    f(1)=3,f(2)=4
  2. B.
    f(1)=2,f(2)=3
  3. C.
    f(2)=4,f(4)=5
  4. D.
    f(2)=3,f(3)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在定義域A上是單調(diào)遞減函數(shù),又F(x)=af(x)(a>0),當(dāng)f(x)>0時,F(xiàn)(x)>1.
求證:(1)f(x)<0時,F(xiàn)(x)<1; 
 (2)F(x)在定義域A上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)在定義域A上是單調(diào)遞減函數(shù),又F(x)=af(x)(a>0),當(dāng)f(x)>0時,F(xiàn)(x)>1.
求證:(1)f(x)<0時,F(xiàn)(x)<1;
(2)F(x)在定義域A上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)在定義域A上是單調(diào)遞減函數(shù),又F(x)=af(x)(a>0),當(dāng)f(x)>0時,F(xiàn)(x)>1.
求證:(1)f(x)<0時,F(xiàn)(x)<1; 
 (2)F(x)在定義域A上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶實驗中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)f(x)在定義域A上是單調(diào)遞減函數(shù),又F(x)=af(x)(a>0),當(dāng)f(x)>0時,F(xiàn)(x)>1.
求證:(1)f(x)<0時,F(xiàn)(x)<1; 
 (2)F(x)在定義域A上是減函數(shù).

查看答案和解析>>


同步練習(xí)冊答案