若等比數(shù)列{an}的前n項(xiàng)和為Sn=2?3n+k(k為常數(shù)),則a3=( 。
A.18B.-18C.36D.-36
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn=2•3n+k(k為常數(shù)),則a3=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等比數(shù)列{an}的前n項(xiàng)和為Sn=2•3n+k(k為常數(shù)),則a3=( 。
A.18B.-18C.36D.-36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等比數(shù)列{an}的前n項(xiàng)和Sn=2·3n+a (a為常數(shù)),則a=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若等比數(shù)列{an}的前n項(xiàng)和Sn=2·3n+a (a為常數(shù)),則a=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-3n(n∈N*
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c值;
(2)求數(shù)列{an}的通項(xiàng)公式an
(3)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)求數(shù)列{an}的通項(xiàng)公式; 
(3)數(shù)列{an}中,是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為sn,sn=2an-3n(n∈N*).
(1)求證數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列.若存在,請(qǐng)給出一組適合條件的項(xiàng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上,
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
(3)若bn=
1
3
an
+1,請(qǐng)求出一個(gè)滿足條件的指數(shù)函數(shù)g(x),使得對(duì)于任意的正整數(shù)n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以證明.(其中為連加號(hào),如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=3n+k(k為常數(shù),n∈N*).
(1)求k的值及數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足
an+12
=(4+k)2nbn
,求數(shù)列{bn}的前n和Tn

查看答案和解析>>


同步練習(xí)冊(cè)答案